OBJECT ORIENTED
SYSTEMS
DEVELOPMENT

Ali Bahrami
Boeing Applied Research & Technology

Eﬂf w irwin
fil McGraw-Hill

Boston Burr Ridge, iL Dubuque, IA Madison, Wl New York San Francisco St. Louis
Bangkok Bogotd Caracas Lisbon London Madrid Mexico City
Milan New Delhi Seoul Singapore Sydney Taipei Toronto

CONTENTS

Preface xv 23 Objects 15
2.4 Objects Are Grouped in Classes 16

‘2.5 Attributes: Object State and
Properties 17

2.6 Object Behavior and Methods 18
o
2,7 Objects Respond to Messages 18

PART CNE

Introduction

: AN OVERVIEW OF OBJECT- 2.8 Encapsulation and Information
ORIENTED SYSTEMS /" Hiding 20
DEVELOPMENT 3 2.9 Class Hierarchy 21
1.1 Introduction 3 2.9.1 Inheritance 23
1.2 Two Orthogonal Views of the 2.9.2 Multiple Inheritance 75

Software 4
1.3 Object-Oriented Syst .10 Polymorphism 25
: rlen ystems
Development Methodology 4 2.11 Object Relationships and
1.4 Why an Object Orientation? 5 Associations %
- y ° 2.11.1 Consumer-Producer
1.5 Overview of the Unified Nt 2%
ppproach 6 2.12 Aggregations and Object
1.6 Organization of This Book 6] cggtaﬁlmm 27
1.7 Summary . 2.13 Case Study: A Payroll Program 28
2. OBJECT BASICS 13 2.13.1 Structured Approach 28
2.1 Introduction 13 2.13.2 The Object-Oriented
2.2 An Object-Oriented Philosophy 14 Approach 30

vili conTenTs

2.14 Advanced Topics
2.14.1 Object and Identity
2.14.2 Static and Dynamic
Binding
2.14.3 Object Persistence
2.14.4 Meta-Classes
2.15 Summary

3. OBJECT-ORIENTED SYSTEMS
DEVELOPMENT LIFE CYCLE

3.1 Introduction

3.2 The Software Development
Process

3.3 Building High-Quality Software

_A3:4 Object-Oriented Systems
Development: A Use-Case
Driven Approach

3.4.1 Object-Oriented Analysis—

Use-Case Driven

3.4.2 Object-Oriented Design

3.4.3 Prototyping

3.4.4 Implementation: Component-

Based Development
3.4.5 Incremental Testing
3.5 Reusability.
3.6 Summary

32
R

34
34
34
35

39
39

40

45
47
47

49
53
53
54

| PART TWO

Methodology, Modeling, and

Unified Modeling Language

4. OBJECT-ORIENTED
METHODOLOGIES

4.1 Introduction: Toward
Unification—Too Many
Methodologies

4.2 Survey of Some of the Object-

Oriented Methodologies

61

61

62

4.3 Rumbaugh et al.’s Object

Modeling Technique

4.3.1 The Object Model

4.3.2 The OMT Dynamic Model
4.3.3 The OMT Functional Model

4.4 The Booch Methodology

4.4.1 The Macro Development
Process

4.4.2 The Micro Development
Process

4.5 The Jacobson et al.

Methodologies

4.5.1 Use Cases

4.5.2 Object-Oriented Software
Engineering: Objectory

4.5.3 Object-Oriented Business
Engineering

4.6 Patterns

4.6.1 Generative and
Nongenerative Patterns

4.6.2 Patterns Template
4.6.3 Antipatterns
4.6.4 Capturing Patterns

4.7 Frameworks
4J.8 The Unified Approach

4.8.1 Object-Oriented Analysis

4.8.2 Object-Oriented Design

4.8.3 Iterative Development and
Continuous Testing

4.8.4 Modeling Based on the
Unified Modeling Language

4.8.5 The UA Proposed
Repository

4.8.6 The Layered Approach to
Software Development

4.8.6.1 The Business Layer

4.8.6.2 The User Interface (View)

Layer
4.8.6.3 The Access Layer

4.9 Summary

63
63
63
64
65

66

67

68
68

70

71
71

73
74
76
76
77
78
79
80

80

81

83

84
84

5. UNIFIED MODELING LANGUAGE

/

.1 Introduction

.2 Static and Dynamic Models
5.2.1 Static Model
5.2.2 Dynamic Model

53 Why Modeling?

5

5

547

.4 Introduction to the Unified
Modeling Language

.5 UML Diagrams
UML Class Diagram

5.6.1 Class Notation: Static
Structure

5.6.2 Object Diagram
5.6.3 Class Interface Notation
5.6.4 Binary Association Notation
5.6.5 Association Role
5.6.6 Qualifier
5.6.7 Multiplicity
5.6.8 OR Association
5.6.9 Association Class
5.6.10 N-Ary Association
5.6.11 Aggregation and
Composition
-6.12 Generalization
7 Use-Case Diagram
.8 UML Dynamic Modeling

5.8.1 UML Interaction Diagrams
5.8.1.1 UML Sequence Diagram
5.8.1.2 UML Collaboration Diagram
5.8.2 UML. Statechart Diagram
5.8.3 UML Activity Diagram
5.8.4 Implementation Diagrams
5.8.4.1 Component Diagram
5.8.4.2 Deployment Diagram

5.9 Model Management: Packages

and Model Organization

5.10 UML Extensibility

5.10.1 Model Constraints and
Comments

89
89
920
90
91

91

CONTENTS X

5.10.2 Note

5.10.3 Stereotype
5.11 UML Meta-Model
5.12 Summary

117
7
117
118

L PART THREE

93
94

94
94
95
95
95
96
97
97
97
98

99

99
101
103
104
104
105
106

1
112
112

114
115

116

Object-Oriented Analysis:
Use-Case Driven

6. OBJECT-ORIENTED ANALYSIS

PROCESS: IDENTIFYING USE
CASES

6.1 Introduction

6.2 Why Analysis Is a Difficult
Activity

6.3 Business Object Analysis:
Understanding the Business

Layer

6.4 Use-Case Driven Object-
Oriented Analysis: The Unified
Approach

6.5 Business Process Modeling
6.6 Use-Case Model
6.6.1 Use Cases under the
Microscope
6.6.2 Uses and Extends
Associations
6.6.3 Identifying the Actors
6.6.4 Guidelines for Finding Use
Cases

6.6.5 How Detailed Must a Use
Case Be? When to Stop
Decomposing and When
to Continue

6.6.6 Dividing Use Cases into
Packages

6.6.7 Naming a Use Case

125
125

126

127

128
129
129

131

133
134

136

136

137
137

X CONTENTS

6.7 Developing Effective
Documentation

6.7.1 Organizing Conventions
for Documentation

6.7.2 Guidelines for Developing
Effective Documentation

6.8 Case Study: Analyzing the
ViaNet Bank ATM—The
Use-Case Driven Process

6.8.1 Background
6.8.2 Identifying Actors and Use

Cases for the ViaNet Bank
ATM System

6.8.3 The ViaNet Bank ATM
Systems’ Packages

6.9 Summary

7. OBJECT ANALYSIS:
CLASSIFICATION

7.1 Introduction
7.2 Classifications Theory

7.3 Approaches for Identifying
Classes

7.4 Noun Phrase Approach

7.4.1 Identifying Tentative
Classes

7.4.2 Selecting Classes from
the Relevant and Fuzzy
Categories

7.4.3 The ViaNet Bank ATM
System: Identifying Classes
by Using Noun Phrase
Approach

7.4.4 Initial List of Noun Phrases:
Candidate Classes

7.4.5 Reviewing the Redundant
Classes and Building a
Common Vocabulary

7.4.6 Reviewing the Classes
Containing Adjectives

138

139

139

140
140

141

146

151
151
152

154
154

154

155

156

156

158

159

7.4.7 Reviewing the Possible
Attributes

7.4.8 Reviewing the Class
Purpose

7.5 Common Class Patterns
Approach

7.5.1 The ViaNet Bank ATM
System: Identifying Classes
by Using Common Class
Patterns

7.6 Use-Case Driven Approach:
identitying Classes and Their
Behaviors through Sequence/
Coliaboration Modeling

7.6.1 Implementation of Scenarios

7.6.2 The ViaNet Bank ATM
System: Decomposing a
Use-Case Scenario with a
Sequence Diagram: Object
Behavior Analysis
7.7 Classes, Responsibilities, and
Collaborators

7.7.1 Classes, Responsibilities,
and Collaborators Process

7.7.2 The ViaNet Bank ATM
System: Identifying Classes
by Using Classes,
Responsibilities, and
Collaborators

7.8 Naming Classes

7.9 Summary

8. IDENTIFYING OBJECT

RELATIONSHIPS, ATTRIBUTES,
AND METHODS

8.1 Introduction
8.2 Associations
8.2.1 Identifying Associations

8.2.2 Guidelines for Identifying
Associations

8.2.3 Common Association
Patterns

160

161

162

163

164
164

165

169

170

171
172
174

177
177
178
179

179

179

8.2.4 Eliminate Unnecessary
Associations
8.3 Super-Sub Class
Relationships
8.3.1 Guidelines for Identifying
Super-Sub Relationship, a
Generalization
8.4 A-Part-of Relationships—
Aggregation
8.4.1 A-Part-of Relationship
Patterns
8.5 Case Study: Relationship
Analysis for the ViaNet Bank
ATM System
8.5.1 Identifying Classes’
Relationships
8.5.2 Developing a UML Class
Diagram Based on the
Use-Case Analysis
8.5.3 Defining Association
Relationships
8.5.4 Defining Super-Sub
Relationships

8.5.5 Identifying the Aggregation/

a-Part-of Relationship

8.6 Class Responsibility:
identifying Attributes and
Methods

8.7 Class Responsibility: Defining
Attributes by Analyzing Use
Cases and Other UML
Diagrams

8.7.1 Guidelines for Defining

Attributes
8.8 Defining Attributes for ViaNet

Bank Objects

8.8.1 Defining Attributes for the
BankClient Class

8.8.2 Defining Attributes for the
Account Class

8.8.3 Defining Attributes for the
Transaction Class

180

181

181

182

183

184

184

184

185

186

187

188

189

189

190

190

190

191

CONTENTS XI

8.8.4 Defining Attributes for the
ATMMachine Class

8.9 Object Responsibility: Methods
and Messages

8.9.1 Defining Methods by
Analyzing UML Diagrams
and Use Cases

8.10 Defining Methods for ViaNet
Bank Objects
8.10.1 Defining Account Class
Operations

$.10.2 Defining BankClient
Class Operations

191

191

192

192

192

193

8.10.3 Defining CheckingAccount

Class Operations
8.11 Summary fz:"

193
194

PART FOUR

Ohject-Oriented Design

9. THE OBJECT-ORIENTED DESIGN

PROCESS AND DESIGN AXIOMS 199

9.1 Introduction

9.2 The Object-Oriented Design
Process

9.3 Object-Oriented Design Axioms
9.4 Corollaries

9.4.1 Corollary 1. Uncoupled
Design with Less
Information Content

9.4.1.1 Coupling
94.12 _Cohes_;'pn _

199

200
202
203

204
204
206

9.4.2 Corollary 2. Single Purpose 206

9.4.3 Coroltary 3. Large Number
of Simpler Classes,
Reusability

206

9.4.4 Corollary 4. Strong Mapping 207
9.4.5 Corollary 5. Standardization 208

Xil CONTENTS

9.4.6 Corollary 6. Designing
with Inheritance 208

9.4.6.1 Achieving Multiple Inheritance
in a Single Inheritance

System 211
9.4.6.2 Avoiding Inheriting
Inappropriate Behaviors pAY
9.5 Design Patterns 212
9.6 Summary 214
10. DESIGNING CLASSES 217
10.1 Introduction 217
10.2 The Object-Oriented Design
Philosophy 217
10.3 UML Object Constraint
Language 218
\}0.4 Designing Classes:
‘ /The Process 219

\}0:5 Class Visibility: Designing
Well-Defined Public, Private,
and Protected Protocols 219

10.5.1 Private and Protected
Protocol Layers: Internal 221

10.5.2 Public Protocol Layer:

External 221
10.6 Designing Classes: Refining
Attributes 221
10.6.1 Attribute Types 222
10.6.2 UML Attribute
Presentation 222
10.7 Refining Attributes for the
ViaNet Bank Objects 223

10.7.1 Refining Attributes for
the BankClient Class 223

10.7.2 Refining Attributes for

the Account Class 223
10.7.3 Refining Attributes for

the Transaction Class 224
Problem 10.1 224

10.7.4 Refining Atiributes for
the ATMMachine Class

10.7.5 Refining Attributes for
the CheckingAccount
Class

10.7.6 Refining Attributes for
the SavingsAccount
Class

10.8 Designing Methods and
Protocols
10.8.1 Design Issues: Avoiding
Design Pitfalls
10.8.2 UML Operation
Presentation
10.9 Designing Methods for the
ViaNet Bank Objects
10.9.1 BankClient Class
VerifyPassword Method
10.9.2 Account Class Deposit
Method
10.9.3 Account Class Withdraw
Method

10.9.4 Account Class
CreateTransaction
Method

10.9.5 Checking Account Class
Withdraw Method

10.9.6 ATMMachine Class
Operations

10.10 Packages and Managing
Classes

10.11 Summary

41. ACCESS LAYER: OBJECT
STORAGE AND OBJECT
INTEROPERABILITY
11.1 Introduction

11.2 Object Store and Persistence:
An Overview

224

224

224

225

226

227

227

228

228

229

229

230

230

230
232

237
237

238

11.3 Database Management

Systems 239
11.3.1 Database Views 240
11.3.2 Database Models 240
11.3.2.1 Hierarchical Model 240
11.3.2.2 Network Model 241
11.3.2.3 Relational Model 241
11.3.3 Database Interface 242

11.3.3.1 Database Schema and
Data Definition Language 242

11.3.3.2 Data Manipulation
Language and Query
Capabilities 242
11.4 Logical and Physical Database
Organization and Access

Control 243
11.4.1 Shareability and
Transactions 243
11.4.2 Concurrency Policy 244
11.5 Distributed Databases and
Client-Server Computing 245
11.5.1 What Is Client-Server
Computing? 245

11.5.2 Distributed and
Cooperative Processing 248

11.6 Distributed Objects Computing:
The Next Generation of Client-

Server Computing 250
11.6.1 Common Object Request
Broker Architecture 251
11.6.2 Microsoft’s
ActiveX/DCOM 252

11.7 Object-Oriented Database
Management Systems:
The Pure World 252

11.7.1 Object-Oriented Databases
versus Traditional
Databases 254

CONTENTS XHil

11.8 Object-Relational Systems:
The Practical World
11.8.1 Object-Relation Mapping
11.8.2 Table-Class Mapping
11.8.3 Table-Multiple Classes
Mapping
11.8.4 Table-Inherited Classes
Mapping
11.8.5 Tables-Inherited Classes
Mapping
11.8.6 Keys for Instance
Navigation
11.9 Multidatabase Systems
11.9.1 Open Database
Connectivity:
Multidatabase Application
Programming Interfaces

11.10 Designing Access Layer
Classes
11.10.1 The Process

11.11 Case Study: Designing the

Access Layer for the ViaNet
Bank ATM

11.11.1 Creating an Access
Class for the
BankClient Class

11.12 Summary

VIEW LAYER: DESIGNING
INTERFACE OBJECTS
12.1 Introduction

12.2 User Interface Design as a
Creative Process

12.3 Designing View Layer Classes

12.4 Macro-Level Process:
Identifying View Classes by
Analyzing Use Cases

12.5 Micro-Level Process

12.5.1 UI Design Rule 1.
Making the Interface
Simple

255
256
257

258

258

258

259
260

262

264

265

269

269
275

281
281

281
284

285
287

286

NIV CONTENTS

S

12.5.2 UI Design Rule 2.
Making the Interface
Transparent and Natural

12.5.3 UI Design Rule 3.
Allowing Users to Be in
Control of the Software

12.5.3.1 Malke the Interface
Forgiving
12.5.3.2 Make the Interface Visual

12.5.3.3 Provide Immediate
Feedback

12.5.3.4 Avoid Modes

12.5.3.5 Make the Interface
——— Congsistent

12.6 The Purpose of a View Layer
interface

12.6.1 Guidelines for Designing
Forms and Data Entry
Windows

12.6.2 Guidelines for Designing
Dialog Boxes and Ermror
Messages

12.6.3 Guidelines for the
Command Buttons
Layout

12.6.4 Guidelines for Designing
Application Windows

12.6.5 Guidelines for Using
Colors

12.6.6 Guidelines for Using
Fonts

12.7 Prototyping the User Interface

12.8 Case Study: Designing User
interface for the ViaNet Bank
ATM

12.8.1 The View Layer Macro
Process

12.8.2 The View Layer Micro
Process

12.8.3 The BankClientAccessUI
Interface Object

290

290

291
291

291
292

292

292

293

296

298

299

300

302

302

304

305

308

309

12.8.4 The MainUl Object

Interface 309
12.8.5 The AccountTransactionUl
Interface Object 309

12.8.6 The CheckingAccountUI
and SavingsAccountUI

Interface Objects 31
12.8.7 Defining the Interface
Behavior 31

12.8.7.1 Identifving Events and
Actions for the BankClientAc-
cessUI Interface Object 313

12.8.7.2 Identifying Events and
Actions for the MainUI
Interface Object 313
12.8.7.3 Identifving Events and
Actions for the Savings-
AccountUI Interface Object 314

12.8.7.4 Identifying Events and

Actions for the Account-

TransactionUl Interface

Object 315
12.9 Summary 317

Software Quality

13. SOFTWARE QUALITY

ASSURANCE 325
13.1 Introduction 325
13.2 Quality Assurance Tests 326
13.3 Testing Strategies 328
13.3.1 Black Box Testing 328
13.3.2 White Box Testing 329
13.3.3 Top-Down Testing 329
13.3.4 Bottom-Up Testing 330
13.4 Impact of Object Orientation
on Testing 330

13.4.1 Impact of Inheritance in
Testing 331

14.

13.4.2 Reusability of Tests 331
13.5 Test Cases 331

13.5.1 Guidelines for Developing
Quality Assurance Test

Cases 332

13.6 Test Plan 333
13.6.1 Guidelines for Developing

Test Plans 334

13.7 Continuous Testing 335

13.8 Myers’s Debugging Principles 337

13.9 Case Study: Developing Test
Cases for the ViaNet Bank

ATM System 337
13.10 Summary 338
SYSTEM USABILITY AND MEA-
SURING USER SATISFACTION 341
14.1 Introduction 341
14.2 Usability Testing 343

14.2.1 Guidelines for Developing

Usability Testing 344

14.2.2 Recording the Usability

Test 345

CONTENTS XV

14.3 User Satisfaction Test 345

14.3.1 Guidelines for Developing
a User Satisfaction Test 346

14.4 A Tool For Analyzing User Satis-
faction: The User Satisfaction
Test Template 347

14.5 Case Study: Developing
Usability Test Plans and Test
Cases for the ViaNet Bank

ATM System 350
14.5.1 Develop Test Objectives 350
14.5.2 Develop Test Cases 350
14.5.3 Analyze the Tests 351
14.6 Summary 352
Appendices
Appendix A Document Template 355
Appendix B Introduction to
Graphical User Interface 381
Glossary 391
Iindex 399

CHAPTER 1

An Overview of Object-
Oriented Systems
Development

Chapter Objectives

You should be able to define and understand

* The object-oriented philosophy and why we need to
study it.

* The unified approach.

1.1 INTRODUCTION

Software development is dynamic and always undergoing major change. The
methods we will use in the future no doubt will differ significantly from those cur-
rently in practice. We can anticipate which methods and tools are going to suc-
ceed, but we cannot predict the future. Factors other than just technical superior-
ity will likely determine which concepts prevail.

Today a vast number of tools and methodologies are available for systems de-
velopment. Systems development refers to all activities that go into producing an
information systems solution. Systems development activities consist of systems
analysis, modeling, design, implementation, testing, and maintenance. A software
development methodology is a series of processes that, if followed, can lead to the
development of an application. The software processes describe how the work is
1o be carried out to achieve the original goal based on the system requirements.
Furthermore, each process consists of a number of steps and rules that should be
Pel'fO_rmcd during development. The software development process will continue
10 exist as long as the development system is in operation.

_ This chapter provides an overview of object-oriented systems development and
discusses why we should study it. Furthermore, we study the unified approach,

which is the methodology used in this book for learning about object-oriented sys-
tems development.

4 PART ONE: INTRODUCTION

1.2 TWO ORTHOGONAL VIEWS OF THE SOFTWARE

Object-oriented systems development methods differ from traditional development
techniques in that the traditional techniques view software as a collection of pro-
grams (or functions) and isolated data. What is a program? Niklaus Wirth [8], the
inventor of Pascal, sums flfp eloguently in his book entitled, interestingly enough,

Algarithms + Data Structures = Programs: “A software system is a set of mech-
isms for '

rming-certain action on certain data.”

This means that there are two different, yet complententary ways to view soft-
ware construction: We can focus primarily on the functions or primarily on the
data. The heart of the distinction between traditional.system-development method-
ologies and newer object-oriented memodolgéfes lies in their primary focus, where
the traditional approach focuses on-the-functions of the system—What is it do-
ing?—object-oriented systems development centers on the object, which combines
data and functionality. As we will see, this seemingly simple shift in focus radi-
cally changes the process of software development.

1.3 OBJECT-ORIENTED SYSTEMS DEVELOPM HODOLOGY

Object-oriented development offers a different model from the traditional software
development approach, which is based on functions and procedures. In simplified
terms, object-oriented systems development is a way to develop software by build-
ing self-contained modules or objects that can be easily replaced, modified, and
reused. Furthermore, it encourages a view of the world as a system of cooperative
and collaborating objects. In an object-oriented environment, software is a collec-
tion of discrete objects that encapsulate their data as well as the functionality to
mode! real-world “objects” An object orientation yields important benefits to the
practice of software construction. Each object has attributes (data) and methods
(functions). Objects are grouped into classes; in object-oriented terms, we discover
and describe the classes involved in the problem domain.

In an object-oriented system, everything is an object and each object is respon-
sible for itself. For example, every Windows application needs Windows objects
that can open themselves on screen and either display something or accept input.
A Windows object is responsible for things like opening, sizing, and closing itself.
Frequently, when a window displays something, that something also is an object
(a chart, for example). A chart object is responsible for things like maintaining its
data and labels and even for drawing itself.

The object-oriented environment emphasizes its cooperative philosophy by
allocating tasks among the objects of the applications. In other words, rather
than writing a lot of code to do all the things that have to be done, you tend to
create a lot of helpers that take on an active role, a spirit, and that form a com-
munity whose interactions become the application. Instead of saying, “System,
compute the payroll of this employee,” you tell the employee object, “compute
your payroll.” This has a powerful effect on the way we approach software

development.

* Promorj

CHAPTER 1: AN OVERVIEW OF OBJECT-ORIENTED SYSTEMS DEVELOPM

1.4 WHY AN OBJECT ORIENTATION?

Ob_!eqt-oﬁented methods enable us to create sets of objects that work together syn-
f:rglsucally to produce software that better model their problem domains than si);n-
ilar systems prpduced by traditional techniques. The systems are easier to adapt to
c.hangmg requirements, easier to maintain, more robust, and promote greater de-
sign gnd cvode reuse. Object-oriented development allows us to create modules of
functwnahty. Once objects are defined, it can be taken for granted that they will
perform their desired functions and you can seal them off in your mind like black
box‘es. Your attention as a programmer shifts to what they do rather than how the

do it. Here are some reasons why object orientation works [3-7]: ’

’ ﬂg@g_&gwd.aﬁabstmcti n. The top-down approach supports abstracti
funct]org level. The objei-oriented approach l:upports flfstractiontr:tc ut]'toci,1 :I;jzztcl:(:
level. Since objects encapsulate both data (attributes) and functions (methods)
thqy work at a higher level of abstraction. The development can proceed at the,
object 1eve‘:I a_nd ignore the rest of the system for as long as necessary, This
makes designing, coding, testing, and maintaining the system much simpier

* Seamless transition among different phases of software development. The/uéxdi-

tionat-approach to software developiment requires differcni-styles-ihd method-

ologies for each step of the process. Moving from one phase to another requires

a complex transition of perspective between models that almost can be in dif-

fcrent worlds. '_I‘his transition not only can slow the development process but also

increases the size of the project and the chance for errors introduced in moving
from one language to another. The object-oriented approach, on the other hand
essentially uses the same language to talk about analysis, design, programming,
and database design. This seamless approach reduces the level of complexity anci
gdundancy and l;akes for clearer, more robust system development.

ncouragement of good programming.dechniques. A class in an object-ori

system carefully delineates between its interface (specifications ofo :wj}f:: tizi[;;g
can do) and the implementation of that interface (how the class does what it

does). The rgutines and attributes within a class are held together tightly. In a

pro_pe}'ly designed system, the classes will be grouped into subsystems bi:t re-

main mdep(?ndent; therefore, changing one class has no impact on other classes

and so, the nnpact‘is minimized. However, the object-oriented approach is not a:

p;lgacea; nothmg is magical here that will promote perfect design or perfect

code. But, by raising the level of abstraction from the function level to the ob-

Joec_:t level and by focusing on the real-world aspects of the system, the object-

ml'::ll:le:nglethod_ tends to promote clearer designs, which are easier to imple-

langu,a = prov1df:s for better overall communication. Using object-oriented

Howevi 2 s not bs_tnct]y necessary to achieve the benefits of an object orientation.

T f’o:nb(‘) Ject-pnented la.mguage such as C++, Smalltalk, or Java adds

B T o object-oriented design and makes it easier to produce more modular

usable code via the Oconcept of class and inheritance [5).

: ity. Objects are reusable because they are modeled directl

ou

sr;aﬁfc‘ilr crleal-world problem d_omain. Each object stands by itself or within)z;

€ of peers (other objects). Within this framework, the class does not

-

6 PART ONE: INTRODUCTION

concern itself with the test of the system or how it is going to be used within a
particular system. This means that classes are designed generically, with reuse
as a constant background goal. Furthermore, the object orientation adds inheri-
tance, which is a powerful technique that allows classes to be built from each
other, and therefore, only differences and enhancements between the classes
need to be designed and coded. All the previous functionality remains and can

be reused without change.

1.5 OVERVIEW OF THE UNIFIED APPROACH

This book is organized around the unified approach for a better understanding of
object-oriented concepts and system development. The unified approach (UA) is a
methodology for software development that is proposed by the author, and used in
this book. The UA, based on methodologies by Booch, Rumbaugh, and Jacobson,
tries to combine the best practices, processes, and guidelines along with the Object
Management Group’s unified modeling language. The unified modeling language
(UML) is a set of notations and conventions used to describe and model an appli-
cation. However, the UML does not specify a methodology or what steps to follow
to develop an application; that would be the task of the UA. Figure 1-1 depicts the
essence of the unified approach. The heart of the UA is Jacobson’s use case. The
use case represents a typical interaction between a user and a computer system (o
capture the users’ goals and needs. In its simplest usage, you capture a use case by
talking to typical users and discussing the various ways they might want to use the
system. The use cases are entered into all other activities of the UA.

The main advantage of an object-oriented system is that the class wee is dy-
namic and can grow. Your function as a developer in an object-oriented environ-
ment is to foster the growth of the class tree by defining new, more specialized
classes to perform the tasks your applications require. After your first few projects,
you will accumulate a repository or class library of your own, one that performs
the operations your applications most often require. At that point, creating addi-
tional applications will require no more than assembling classes from the class li-
brary. Additionally, applying lessons learned from past developmental efforts to fu-
ture projects will improve the quality of the product and reduce the cost and
development time.

This book uses a layered architecture to develop applications. Layered archi-
tecture is an approach to software development that allows us to create objects that
represent tangible elements of the business independent of how they are repre-
sented to the user through an interface or physically stored in a database. The lay-
ered approach consists of view or user interface, business, and access layers. This
approach reduces the interdependence of the user interface, database access, and
business control; therefore, it allows for a more robust and flexible system.

1.6 ORGANIZATION OF THIS BOOK

Chapter 2 introduces the basics of the object-oriented approach and why we should
study it. Furthermore, we Jearn that the main thrust of the object-oriented approach

Prototyping and Testing

CHAPTER 1: AN OVERVIEW OF OBJECT-ORIENTED SYSTEMS DEVELOPMENT 7

Design

Analysis

E
Il 1R 15 | 38
3 } B3
B (5[
POl tinise
i A
________________________________ F Y
& ga E_g B 3 £
z H f&z| &3
- Ewd 23 g g -
L i Hig) 2z < 2
: x_’ 3 §§ = & 5 2
R E®
g & agj S 5% i

48T 9g% S22 3 FEF2 = = 2§ | 9223 2% 4
2iligs ge3 B RgE x 3@ Bdp [dfEigE | 2

Blail fifel BE E Fi.oqul |gpBengt | 2
1> ROS-EEEES sisage Q s o w3 25 &

244 HERTH e e L I Eagyiis 155e888: | o

g cBans i Elan BRhI |
R E Rt LR Eet e

S0 disSoaffiiotnaess § Eiscng| SRESERGE |

353 f-‘ﬁa wavuizeg B gé’:&"‘a""g %S EALE K i

zie 534 98 Bovir TlE32 23 | o4

&ig £ 2 14

OB e ————— r: ___________ oo -

]

2¥
o.}_< .g_é E’ Eg.g
H 3 Bid
£ Lt

3 ir [o<®]

T3 2= Is a
3 5 & j 552 £
i g el [SQE '§
01 &, 3d ., 13 T
g8 ﬁ BuT = @ [+ A o F=S Q
e R Rl B b
e £g SEyEE g2 ByEd: 2§ 3 28253 LE -
ric) -»§ B g 03, 55 §'; 3 _a oc B gSLESER 58 T &
5 o g 24 'gﬁ 2 8 =25 Bl aliad ._.§° -
5= E paEp CuEfdaiERe Supes®R JERRii jus 3
52 _§ «sg?‘;?a $358akisil qixfrzl cR33RE HER @
&R Jg5pl ASaiTEsfa 1dadvie danann st 3:

& o SISO - EB.:: gE

8 PART ONE: INTRODUCTION

is to provide a set of objects that closely reflects the underlying application. For
example, the user who needs to develop a financial application could develop it in
a financial language with considerably less difficulty. An object-oriented approach
allows the base concepts of the language to be extended to include ideas closer to
those of its application. You can define a new data type (object) in terms of an ex-
isting data type until it appears that the language directly supports the primitives
of the application. The real advantage of using an object-oriented approach is that
you can build on what you already have.

Chapter 3 explains the object-oriented system development life cycle (SDLC).
The essence of the software process is the transformation of users’ needs in the ap-
plication domain into a software solution that is executed in the implementation
domain. The concept of use case or set of scenarios can be a valuable tool for un-
derstanding the users’ needs. We will learn that an object-oriented approach re-
guires a more rigorous process up front to do things right. We need to spend more
time gathering requirements, developing a requirements model, developing an
analysis model, then turning that into the design model. This chapter concludes
Part 1 (Introduction) of the book.

Chapter 4 is the first chapter of Part II (Methodology, Modeling, and Unified
Modeling Language). Chapter 4 looks at the current trend in object-oriented
methodologies, which is toward combining the best aspects of today’s most pop-
ular methods. We also take a closer look at the unified approach.

Chapter 5 describes the unified modeling language in detail. The UML merges
the best of the notations developed by the so-called three amigos—Booch, Rum-
baugh, and Jacobson—in their attempt to unify their modeling efforts. The unified
modeling language originally was called the unified method (UM). However, the
methodologies that were an integral part of the Booch, Rumbaugh, and Jacobson
methods were separated from the notation; and the unification efforts of Booch,
Jacobson, and Rumbaugh eventually focused more on the graphical modeling lan-
guage and its semantics and less on the underlying process and methodology. They
sum up the reason for the name as follows:

The UML is intended to be a universal language for modeling systems, meaning that it
can express models of many different kinds and purposes, just as a programming lan-
guage or a natural language can be used in many different ways. Thus, a single univer-
sal process for all styles of development did not seem possible or even desirable: what
works for a shrink-wrapped software project is probably wrong for a one-of-a-kind glob-
ally distributed, human-critical family of systems. However, the UML. can be used to
express the artifacts of all of these different processes, namely, the models that are pro-
duced. Our move to the UML does not mean that we are ignoring the issues of process.
Indeed, the UML assumes a process that is use case driven, architecture-centered, itef-
ative and incremental. Tt is our observation that the details of this general development
process must be adapted to the particular development culture or application domain of
a specific organization. We are also working on process issues, but we have chosen to
separate the modeling language from the process. By making the modeling language and
its process nearly independent, we therefore give users and other methodologists con-
siderable degrees of freedom to craft a specific process yet still use a common language

CHAPTER 1: AN OVERVIEW OF OBJECT-ORIENTED SYSTEMS DEVELOPMENT 9

of expression. This is not unlike blueprints for buildings: there is a commonly under-
stooc! language for blueprints, but there are a number of different ways to build, de-
pending upon the nature of what is being built and who is doing the building. This is’why
we say that the UML is essentially the language of blueprints for software. [2, p. 5]

The UML has become the standard notation for object-oriented modeling sys-
tems. It is an evolving notation that is still under development. Chapter 5 concludes
this part of the book.

Chapter 6 is the first chapter of Part III (Object-Oriented Analysis: Use-Case
Driven). The goal of object-oriented analysis is to first understand the domain of
the Rroblem and the system’s responsibilities by understanding how the users use
or W.lll use the system. The main task of the analysis is to capture a complete, un-
ambiguous, and consistent picture of the requirements of the system. This is ac-
complished by constructing several models of the system. These models concen-
trate on describing what the system does rather than how it does it. Separating the
behavior of a system from the way it is implemented requires viewing the system
from the users’ perspective rather than that of the machine. This analysis is focused
on the domain of the problem and concerned with externally visible behavior [1].
Other activities of object-oriented analysis are to identify the objects that make up
the system, their behaviors, and their relationships. Chapter 6 explains the object-
oriented analysis process and provides a detailed discussion of use-case driven
object-oriented analysis. The use case is a typical interaction between a user and
a computer system utilized to capture users’ goals and needs. The use-case model
represents the users’ view of the system or the users’ needs. In its simplest usage,
you capture a use case by talking to typical users and discussing the various things
they might want to do with the system. The heart of the UA is the Jacobson’s use
case. The use cases are a part of all other activities of the UA (see Figure 1-1).

The main activities of the object-oriented analysis are to identify classes in the
system. Finding classes is one of the hardest activities in the analysis. There is no
such a thing as the perfect class structure or the right set of objects. Nevertheless
several techniques, such as the use-case driven approach or the noun phrase anci
otl}er classification methods, can offer us guidelines and general rules for identi-
fyn_lg thei classes in the given problem domain. Furthermore, identifying classes is
an iterative process, and as you gain more experience, you will get better at iden-
tifying classes. In Chapter 7, we study four approaches to identifying classes: the
noun p_hrase, class categorization, use-case driven, and class responsibilities col-
laboration approaches.

ThIn an c_ﬁbject-oriented .emfirqnment, objects take on an active role in a system.
: tese qb]ects do not exist in isolation but interact with each other. Indeed, their
nteractions aqd relationships become the application. Chapter 8 describes the
guidelines for 1dgntifying object relationships, attributes, and methods. Chapter 8
concludes the_ object-oriented analysis part of the book.
” gl;al?ot(e)i 9 is the first chapter of Part IV (Object-Oriented Design). In this part
P , We lt;am how to elevatfa t!le al}alysis model into actual objects that can
S 1e required task. l.impl?am is shifted from the application domain to im-
tation. The classes identified during analysis provide a framework for the

40 PART ONE: INTRODUCTION

design phase. Object-oriented design and object-oriented analysis are distinct dis-
ciplines, but they are intertwined as well. Object-oriented development is highly
incremental; in other words, you start with object-oriented analysis, model it, cre-
ate an object-oriented design, then some more of each, again and again, gradually
refining and completing the models of the system. Part I'V describes object-oriented
design. Other activities of object-oriented design are the user interface design and
prototype and the design of the database access. Chapter 9 explains the object-
oriented design process and design axioms. The main objective of the axiomatic
approach is to formalize the design process and assist in establishing a scientific
foundation for the object-oriented design process, so as to provide a fundamental
basis of the creation of systems. These guidelines, with incremental and evolu-
tionary styles of software development, will provide you a powerful way for de-
signing systems.

In Chapter 10, we look at guidelines and approaches that you can use to design
objects and their methods. Although the design concepts to be discussed in this
chapter are general, we concentrate on designing the business objects. Chapter 10
describes the first step of the object-oriented design process, which consists of ap-
plying design axioms to design objects and their attributes, methods, associations,
structures, and protocols.

Chapter 11 introduces issues regarding object storage, relational and object-
oriented database management systems, and object interoperability. We then look
at current trends to combine object and relational systems to provide a very prac-
tical solution to the problem of object storage. We conclude the chapter with how
10 design the access layer objects. The main idea behind the access layer is to cre-
ate a set of classes that know how to communicate with the data source, regard-
less of their format, whether it is a file, relational database, mainframe, or Inter-
net. The access classes must be able to translate any data-related requests from the
business layer into the appropriate protocol for data access. Access layer classes
provide easy migration to emerging distributed object technology, such as CORBA
and DCOM. Furthermore, they should be able to address the (relatively) modest
needs of two-tier client-server architectures as well as the difficult demands of
fine-grained, peer-to-peer distributed-object architectures.

The main goals of view layer objects are to display and obtain the information
needed in an accessible, efficient manner. The design of your user interface and
view layer objects, more than anything else, affects how a user interacts and there-
fore experiences the application. A well-designed user interface has visual appeal
that motivates users to use the application. In Chapter 12, we learn how to design
the view layer by mapping the user interface objects to the view layer objects; we
look at user interface design rules, which are based on several design axioms, and
finally at the guidelines for developing a graphical user interface. This chapter con-
cludes the object-oriented design part of the book.

Chapter 13 is the first chapter of Part V (Software Quality), which discusses dif-
ferent aspects of software quality and testing. In Chapter 13, we look at testing
strategies, the impact of object orientation on software quality, and guidelines for
developing comprehensive test cases and plans that can detect and identify poten-
tial problems before delivering the software to the users.

CHAPTER 1: AN OVERVIEW OF OBJECT-ORIENTED SYSTEMS DEVELOPMENT 11

L!sability tcsting is different from quality assurance testing in that, rather than
ﬁndu’lg programming defe-cts, you assess how well the interface or the software fits
users’ needs and expectations. Furthermore, to ensure usability of the system, we
must measure user satisfaction throughout the system development. Chapter 14 de-
;cn!)es usa;blhtybaind user satisfaction tests. We study how to develop user satis-
action and usability tests b identi i i
iy y ased on the use cases identified during the analysis

Appen‘dlx A contain.s a template for documenting a system requirement. The
template in this appendix is not to replace the documentation capability of a CASE
;ool but to be usc;;:l as an example for issues or modeling elements that are needed
or creating an effective system document. Finally, Appendix B provide i
of Windows and graphical user interface basics, o ° S

1.7 SUMMARY

In an cbject-oriented environment, software is a collection of discrete objects that
engapsulate their data and the functionality to model real-world “objects.” Once
ob_]ec_ts are defined, you can take it for granted that they will perform their.desired
functions and so seal them off in your mind like black boxes. Your attention as a
programmer shifts to what they do rather than how they do it. The object-oriented
llft? cycle encourages a view of the world as a system of cooperative and collabo-
rating agents.

An object crientation produces systems that are easier to evolve, more flexible,

more robust, and more reusable than a top-down structu - =
. . re approach. -
entation pp An object ori

* Allows working at a higher level of abstraction.

* Provides a seamless transition among different phases of software development.
* Encourages good development practices.
* Promotes reusability.

The unified ap'proa§h (UA) is the methodology for software development pro-
posed and I:lscd in this book. Based on the Booch, Rumbaugh, and Jacobson
methodologies, the UA consists of the following concepts:

* Use-case driven development.

* Utilizing the unified modeling language for modeling.

s Ob!ect-or?entcd analysis (utilizing use cases and object modeling).
* Object-oriented design.

A N
: Repositories of reusable classes and maximum reuse.
The layered approach.

* Incremental development and i
1 prototyping.
* Continuous testing. e

KEY TERMS

§a¥ewd architecture (p. 6)
Oftware development methodology (p. 3)

42 PART ONE: INTRODUCTION

Unified approach (UA) (p. 6)
Unified modeling language (UML) (p. 6)

REVIEW QUESTIONS

1. What is system development methodology?
2. What are orthogonal views of software?
3. What is the object-oriented systems development methodology?

4.

How does the object-oriented approach differ from the traditional top-down approach?

5. What are the advantages of object-oriented development?
6. Describe the components of the unified approach.

PROBLEMS

L

2.

3

4.

Object-oriented development already is big in industry and will grow bigger in the years
to come. More and more companies will use an object-oriented approach to build their
complex (multimedia, workflow, database, artificial intelligence, real-time, and client-
server) systems. Research the library or WWW to obtain an article about a major com-
pany that has used object-oriented technology to build its future information system.
Consult the WWW or library to obtain an article on a real-world application that has
incorporated object-oriented tools. Write a summary report of your findings.

Consult the WWW or library to obtain an article on an object-oriented methodology.
Write a summary of your findings.

Consult the WWW or library to obtain an article that describes a large software system
that was behind schedule, over budget, and failed to achieve the expected functionality.
What factors were blamed, and how could the failure have been avoided?

5, Clonsult the WWW or library to obtain an article on visual and object-oriented pro-

gramming. Write a paper based on your findings.

REFERENCES

1.

Anderson, Michael; and Bergstrand, John. “Formalizing Use Cases with Message Se-
quence Charts.” Master’s thesis, Department of Communication Systems at Lund Insti-
tute of Technology, 1993.

. Booch, Grady; Jacobson, Ivar; and Rumbaugh, James. The Unified Modeling Language,

Notation Guide Version 1.1. http:Ifwww.rational.comfumlﬂltmllnotation (September
1997).

. Edwards, John. “Lessons Learned in Practical Application of the OO Paradigm.” Ob-

ject-Oriented Systems Symposium, Washington, DC, January 1990.

. Graham, Ian. Object Oriented Methods, 2d ed. Reading MA: Addison-Wesley Publish-

ing Company, 1994.

. King, Gary Warren. “Object-Oriented Really Is Better Than Structured.”

http:llwww.oz.net!~gking/whyoop.htm (September 20, 1995).

. Lassesen, Kenneth M, “Leveraging the Mainframe in Business Solutions with Microsoft

Access and Visual Basic” TechEd (1995).

. Burnett, Margaret; Goldberg, Adele; and Lewis, Ted, eds. Visual Object-Oriented Pro-

gramming: Concepts and Environments. Englewood Cliffs, NJ: Prentice-Hall/Manning
Publicaticns, 1995.

. Wirth, Niklaus. Algorithms + Data Structure = Programs. Englewood Cliffs, NJ. Pren-

tice-Hall, 1975.

CHAPTER 2

Object Basics

Chapter Objectives

You should be able to define and understand

= Why we need to study object-oriented concepts.
« Objects and classes—and their differences.

» Class attributes and methods.

* The concept of messages.

* Class hierarchy inheritance and multiple inheritance.
* Object relationships and associations.

* Encapsulation and information hiding,

* Polymorphism.

* Advantage of the object-oriented approach.

* Aggregations.

* Static and dynamic binding.

* Object persistence.

* Meta-classes.

2.1 INTRODUCTION

:tf il:‘:hri 1;e2 irs’;’ntgle r:lc(mvating factor behind object-oriented system development,
e u(-) n:l e software. development easier and more natural by raising
b2 2 wf;: gn l'tlo the point wrhere applications can be implemented in the
i o y ich they are described by‘ users. Indeed, the name objecr was

ause “everyone knows what an object is.” The real question, then, is not

50 mllCh “what iS : L 13 5 .
velopment?” an object?” but “What do objects have to do with system de-

13

44 PART ONE: INTRODUCTION

Let us develop the notion of an object through an example. A car is an object:
a real-world entity, identifiably separate from its surroundings. A car has a well-
defined set of attributes in relation to other objects—such as color, manufacturer,
cost, and owner—and a well-defined set of things you normally do with it—drive
it, lock it, tow it, and carry passengers in it. In an object model, we call the for-
mer. properties_or attributes and the latter procedures or methods. Propexties (or
attributes) describe the state (data) of an object. Methods (procedures) define its
behavior. Stocks and bonds might be objects for a financial investment application.
Parts and assemblies might be objects of a bill of materials application. Therefore,
we can conclude that an object is whatever an application wants to “talk” about.

2.2 AN OBJECT-ORIENTED PHILOSOPHY

Most programming languages provide programmers with a way of describing
processes. Although most programming languages are computationally equivalent
(a process describable in one is describable in another), the ease of description,
reusability, extensibility, readability, computational efficiency, and ability to main-
tain the description can vary widely depending on the language used. It has been
said that, “One should speak English for business, French for seduction, German
for engineering, and Persian for poetry.” A similar quip could be made about pro-
gramming languages.

A language, natural or programming, provides its users a base set of constructs.
Many programming languages derive their base ideas from the underlying ma-
chine. The machine may “understand” or recognize data types such as integers,
floating point numbers, and characters; and the programming language will repre-
sent precisely these types as structures. The machine may understand indirect ad-
dressing modes or base plus offset addressing; and the programming language cor-
respondingly will represent the concepts of pointers and vectors. Nothing is terribly
wrong with this, but these concepts are pretty far removed from those of a typical
application. In practical terms, it means that a user or programmer is implement-
ing, say, a financial investment (risk, returns, growth, and the various investment
instruments) into the much lower-level primitives of the programming language,
like vectors or integers.

It would be marvelous if we could build a machine whose underlying primitives
were precisely those of an application. The user who needs to develop a financial
application could develop a financial investment machine directly in financial in-
vestment machine language with no mental translation at all. Clearly, it is too ex-
pensive to design new hardware on a per-application basis. But, it really is not nec-
essary to go this far, because programming languages can bridge the semantic gap
between the concepts of the application and those of the underlying machine.

A fundamental characteristic of object-oriented programming is that it allows

the base concepts of the language to be extended to include ideas and-terms closeL~

t(mig&flts_amﬁ’cglﬁ;jew data types can be defined in terms of existing data
types until it appears that the language directly supports the primitives of the ap-
plication. In our financial investment example, a bond (data type) may be defined
that has the same understanding within the language as a character data type. A

CHAPTER 2; OBJECT BASICS 15

bux operation cn a bond can be defined that has the same un i
!mhar Plus {+) operation on a number. Using this data abséiﬁanﬁgghiliﬁfﬁ
is possible to create new, higher-level, and more specialized data abstractions &;olu
can work dlrectly. in the language, manipulating the kinds of “objects™ requin;d b
you or your application, without having to constantly struggle to bridge the ay
ltahe;;vleen how to conceive of these objects and how to write the code to represgen[:
. :I‘he fundamental c}iffcrence between the object-oriented systems and their tra-

ditional counterparts is the way in which you approach problems. Most traditional
develgpmem m?thodologies are either algorithm centric or data centric. In an
algorithm-centric methodology, you think of an algorithm that can accomplish the
ta;k, then bltl}l]]jd data structures for that algorithm to use. In‘a =-centric method-
:tmggt,uic‘)u nk how to structure the f_igta, therl. bl.uld ,tl:,f dggﬁ@mﬂ that

In an object-oriented system, however, the algorithm and the data SH:étﬁfé'é are
packaged together as an object, which has a set of attributes or properties. The state
o_f these atu?butes is reflected in the values stored in its data stmctures; In addi-
tion, the gbjf.ect has a collection of procedures or methods—things it ca.n do—as
reflected in its package of methods. The attributes and methods are equal and in-
separable parts of the object; one cannot ignore one for the sake of the other. For
example, a car has certain attributes, such as color, year, model, and price, ami can
perform a qqmber of operations, such as go, stop, turn left, and temn rigf,tt

The traditional approach to software development tends toward writing .a lot of
code to do all the things that have to be done. The code is the plans, bricks, and
mortar t_ha‘t you use to build structures. You are the only active entity; t‘he cod(; ba-
sically, is just a lot of building materials. The object-oriented approac;h is more’like
t':mployfng a lot of helpers that take on an active role and form a community whose
interactions become the application. Instead of saying, “System, write the value of
this number to the screen,” we tell the number object, “Write yourself.” This has
a plcilwselxl'flu‘:n effect gp the way we approach software development. .

ary, o ject-oriented programming languages bridge th i

between the ideas of the application and thgose fil’] ttgle undeflyinge 1:'2::‘::11:: g:g

objects represe oati) ;
al‘ChitecturI;_ nt the application data in a way that is not forced by hardware

2.3 OBJECTS

z;t;?c:;;ne‘:{?i:; was _ﬁrst formally utilize'd in the Simula language, and objects
B in Simula programs to simulate some aspect of reality {5]. The
‘w'orld o F_ans a combmatlfm of data and logic that represents some real-
SWMPIC’ consider a Saab automobile. The Saab can be repre-

a computer program as an object. The “data” part of this object would

be th)
€ car's name, color, number of doors, price, and so forth. The *“logic” part

of the object -
stop, go)_J could be a collection of programs (show mileage, change mileage,

46 PART ONE: INTRODUCTION

In an object-oriented system, everything is an object: A spreadsheet, a cell in a
spreadsheet, a bar chart, a title in a bar chart, a report, a number or telephone num-
ber, a file, a folder, a printer, a word or sentence, even a single character all are
examples of an object. Each of us deals with objects daily. Some objects, such as
a telephone, are so common that we find them in many places. Other objects, like
the folders in a file cabinet or the tools we use for home repair, may be located in
a certain place {7].

When developing an object-oriented application, two basic questions always

arise:

« What objects does the application need?
« What functionality should those objects have?

For example, every Windows application needs Windows objects that can either
display something or accept input. Frequently, when a window displays something,
that something is an object as well.

Conceptually, each object is responsible for itself. For example, a Windows ob-
ject is responsible for things like opening, sizing, and closing itself. A chart object
is responsible for maintaining its data and labels and even for drawing itself.

Programming in an object-oriented system consists of adding new kinds of ob-
jects to the system and defining how they behave. Frequently, these new object
classes can be built from the objects supplied by the object-oriented system.

2.4 OBJECTS ARE GROUPED IN CLASSES

Many of us find it fairly natural to partition the world into objects, properties
(states), and procedures (behavior). This is a common and useful partitioning or
classification. Also, we routinely divide the world along a second dimension: We
distinguish classes from instances. When an eagle flies over us, we have no trou-
ble identifying it as an eagle and not an airplane. What is occurring here? Even
though we might never have seen this particular bird before, we can immediately
identify it as an eagle. Clearly, we have some general idea of what eagles look like,
sound like, what they do, and what they are good for—a generic notion of eagles,
or what we call the class eagle.

Classes are used to distinguish one type of object t_'rom_ar_lothcr'.__l_n the context
of object-oriented systems, a ¢lass i3 set of objects that share a common_struc-
pure-and T tommon-behavior; &single object is simply an instance of a class [3].
A class is a specification of structure (instance variables), behavior (methods), and
inheritance for objects. (Inheritance is discussed later in this chapter.)

Classes are an important mechanism for classifying objects. The chief role ofa
class is to define the properties and procedures (the state and behavior) and ap-
plicability of its instances. The class car, for example, defines the property color.
Each individual car (formaily, each instance of the class car) will have a value fof
this property, such as maroon, yellow, or white.

In an object-oriented system, a method or behavior of an object is defined by
its class. Each object is an instance of a class. There may be many different clagses.

CHAPTER 2: oBJECT Basics 17

| Employee C]ass]

Sue

Bill
Al

Objects of the Class Employee

Hal

David
FIGURE 2-1
Sue, Bili, Al, Hai, and David are instances or objects of the class Employee

Think of a class as an object template (see Figure 2—1). Every object of a give

class has the same data format and responds to the same instructions. For e%camn
ple, employees, such as Sue, Bill, Al, Hal, and David all are instances ‘of the cla ;
Employee. You can create unlimited instances of a given class. The instruction .
sponded to by eac_h of those instances of employee are managed by the class STrl?-
data assocxfited with a particular object is managed by the object itself. For e;(am?
ple, you mngl}t ha.ve two employee objects, one called Al and the othei‘ Bill. Each
employee object is responsible for its own data, such as social security mimber
address, and salary. In short, the objects you use in your programs are instances o%

classes. You can use any of th
e predefined classes that are part of j i
an -Ori-
ented system or you can create your own, b objecton

2.5 ATTRIBUTES: OBJECT STATE AND PROPERTIES

Properties repre

tionL Often, we want to refer to the descrip-

: s lan;;u apg A 116: ;a er than how they are represented in a particular pro-

falcaltummrer Bane 3 ur example,_ th_e properties of a car, such as color, manu-
) , are abstract descriptions (see Figure 2-2). We could represent

FIGURE 2-2
The attributes of a car object.
Car
Cost
Color
Make
Model

48 PART ONE: INTRODUCTION

each property in several ways in a programming language. For color, we could
choose to use a sequence of characters such as red, or the (stock) number for red
paint, or a reference to a full-color video image that paints a red swatch on the
screen when displayed. Manufacturer could be denoted by a name, a reference to
a manufacturer object, or a corporate tax identification number. Cost could be a
floating point number, a fixed point number, or an integer in units of pennies or
even lira. The importance of this distinction is that an object’s abstract state can
be independent of its physical representation.

2.6 OBJECT BEHAVIOR AND METHODS

When we talk about an elephant or a car, we usually can describe the set of things
we normally do with it or that it can do on its own. We can drive a car, we can
ride an elephant, or the elephant can eat a peanut. Each of these statements isa
description of the object’s behavior. In the object model, object behavior is de-
scribed in methods or procedures. A method implements the behavior of an object.
Basically, a method is a function or procedure that is defined for a class and typ-
jcally can access the internal state of an object of that class to perform some op-
eration. Behavior denotes the collection of methods that abstractly describes what
an object is capable of doing. Each procedure defines and describes a particular
behavior of an object. The object, called the receiver, is that on which the method
operates, Methods encapsulate the behavior of the object, provide interfaces to the
object, and hide any of the internal structures and states maintained by the object.
Consequently, procedures provide us the means to communicate with an object and
access its properties. The use of methods to exclusively access or update proper-
ties is considered good programming style, since it limits the impact of any later
changes to the representation of the properties.

Objects take responsibility for their own behavior. In an object-oriented system,
one does not have to write complicated code or utilize extensive conditional checks
through the use of case statements for deciding what function t0 call based on a
data type or class. For example, an employee object knows how to compute its
salary. Therefore, to compuie an employee salary, all that is required is to send the

computePayroll “message” t0 the employee object. This simplification of code
simplifies application development and maintenance.

2,7 OBJECTS RESPOND TO MESSAGES

An object’s capabilities are determined by the methods defined for it. Methods
conceptually are equivalent to the function definitions used in procedural lan-
guages. For example, a draw method would tell a chart how to draw itself. How-
ever, to do an operation, a message is sent to an object. Objects perform opera-
tions in response to messages. For example, when you press on the brake pedal of
a car, you send a stop message to the car object. The car object knows how to re-
spond to the stop message, since brakes have been designed with specialized parts
such as brake pads and drums precisely to respond to that message. Sending the
same stop message fo a different object, such as a tree, however, would be mean-

CHAPTER 2: OBJECT BASics 19

ingless fmd could result in an unanticipated (if any) response. Following a set of
;):r:;;r:lt;:gg;:)r protocols, protects the developer or user from unauthorized data

Messages essentially are nonspecific function calls: We would send a draw
message to a chart when we want the chart to draw itself. A message is different
ﬁtom a subroutine call, since different objects can respond to the same message in
different ways. For example, cars, motorcycles, and bicycles will all respond to a
stop message, but the actual operations performed are object specific.

}n the top exa.mple, depicted in Figure 2-3, we send a Brake message to the Car
object. In the middle example, we send a multiplication message to 5 object fol-
lowed by the number by which we want to multiply 5. In the bottom example, a
F‘ompute Payroll message is sent to the Employee object, where the employee (;b—
ject knows pow to respond to the Payroll message. Note that the message makes
1o assumptions about the class of the receiver or the arguments; they are simpl
objects. It is th‘.: receiver’s responsibility to respond to a message in an approprg
ate manner. This gives you a great deal of flexibility, since different objects can
respond to the same message in different ways. This is known as polymorphism
.(more on polymorphism later in this chapter), meaning “many shapes (behav-
uzr]i).” Polymorphism is the main difference between a message and a subroutine
call.

Method.s are similar to functions, procedures, or subroutines in more traditional
programming languages, such as COBOL, Basic, or C. The area where methods
and functions di.ffer, however, is in how they are invoked. In a Basic program, you
call the subroutine (e.g., GOSUB 1000); in a C program, you call the functic;n by
name (e.g., draw chart). In an object-oriented system, you invoke a method of an
ob]ec't by sending an object a message. A message is much more general than a
func;tmn call. To draw a chart, you would send a draw message to the chart object
Notice that draw is a more general instruction than, say, draw a chart. That is be:
cause the draw message can be sent to many other objects, such as a line or cir-
cle, and each object could act differently.

It is important to understand the difference between methods and messages. Say
you want to tell someone to make you French onion soup. Your instruction i-s the

mu -3
Objects respond to messages according to methods defined in its class.

'Cﬂl:tjﬂcl- _M..............!?WE

*7

20 PART ONE: INTRODUCTION

message, the way the French onion soup is prepared is the method, and the French
onion soup is the object. In other words, the message is the instruction and the
method is the implementation. An object or an instance of a class understands mes-
sages. A message has a name, just like a method, such as cost, set cost, cooking
time. An object understands a message when it can match the message (o a method
that has a same name as the message. To match up the message, an object first
searches the methods defined by its class. If found, that method is called up. If not
found, the object searches the superclass of its class. 1f it is found in a superclass,
then that method is called up. Otherwise, it continues the search upward. An error
occurs only if none of the superclasses contains the method.

A message differs from a function in that a function says how to do something
and a message says what to do. Because a message is so general, it can be used
over and over again in many different contexts. The result is a system more re-
silient to change and more reusable, both within an application and from one ap-
plication to another.

@8 ENCAPSULATION AND INFORMATION HIDING
=

Information hiding is the principle of concealing the internal data and procedures
of an object and providing an interface to each object in such a way as 10 reveal
as little as possible about its inner workings. As in conventional programming,
some languages permit arbitrary access to objects and allow methods to be defined
outside of a class. For example, Simula provides no protection, of information hid-
ing, for objects, meaning that an object’s data, or instance variables, may be ac-
cessed wherever visible. However, most object-oriented languages provide a well-
defined interface to their objects through classes. For example, C++ has a very
general encapsulation protection mechanism with public, private, and protected
members. Public members (member data and member functions) may be accessed
from anywhere. For instance, the computePayroll method of an employee object
will be public. Private members are accessible only from within a class. An object
data representation, such as a list or an array, usually will be private. Protected
members can be accessed only.-from-subclagses.

Often, an object is said to encapsulate _LMg?a and a program. This means that
the user cannot see the inside of the object “capsule,” but can use the object by

calling the object’s methods [8]. Encapsulation or information hiding is-a-destgm
goal of an object-oriented system. Rather than allowing an object direct access 10
another object’s dafa, a message 75'sent to the target object requesting information.
This ensures not only that instructions are operating on the proper data but also
that no object can operaie directly on another object’s data. Using this technique,
an object’s internal format is insulated from other objects.

Another issue is per-object or per-class protection. In per-class protection.-
most common form (e.g., Ada, C++, Eiffel), class methods can access any dbject
of that class and not just the receiver. In per-object protection, methods can.aecess
only the receiver. —

An important factor in achieving encapsulation is the design of different classes
of objects that operaie using a common protocol, or object’s user interface. This

CHAPTER 2: OBJECT BASICS 21

means that many objects will respond to the
. ' _ same message, but each will perfo
the message using operations tailored to its class. In this way, a program C[;T‘l se?ng
?e(gjir:;:;c_nies;age agd leave the implementation up to the receiving object, which
interdependencie i i ,
B p s and increases the amount of interchangeable and
A car engine is an example of enca i i
‘ : . psulation. Although engines m i i
implementation, the interface between the driver and the %ar isgthroughaz ggienzt;z
pl:otoc:llz Stfzp on the gas 'Fo increase power and let up on the gas to decrease power.
Since all drivers .kno‘w FhlS protocol, all drivers can use this method in all cars n<;
?ﬁt:rro:lhg: egﬁme ISThl'n the car. That detail is insulated from the rest of the,car
e driver. This simpli i i j i
iy simplifies the manipulation of car objects and the main-
Data abstraction is a benefit of the obj i
: : ject-oriented concept that incorporat
encapsulation and polymorphism. Data are abstracted when tﬁey are shierllcaiel(-:lat?;

a full set of methods !
object and only those methods can access the data portion of an

2.9 CLASS HIERARCHY

An object-oriented system organizes classes into a subclass-su i
Different properties and behaviors are used as the basis for maskilljlegr‘:iliasi?nk;gigclt;g '
tween classes and subclasses. At the top of the class hierarchy are the most en'
Eargl‘__“ classes and at the bottom are the most specific. The family car.in Figure g?.—d;
is a subclass of car. A subclass inheritsall of the properties animethodi {(proce-
gau;e;)n df:-ﬁr_l_ed in its syperclasg. In this case, we can drive a family car justpas we
ol m:teh c;agz c.a\(r:l or, mde'ed, almgst any motor vehicle. Subclasses generally add
il and properties speglﬂc to that class. Subclasses may refine or con-
n the state and behavior inherited from its superclass. In our example, race cars

FIQURE 2-4
Superclass/subclass hierarchy.

Motor Vehicle

Bus

292 pART ONE: INTRODUCTION

only have one occupant, the driver. In this manner, subclasses modify the attribute
(number of passengers) of its superclass, Car.

By contrast, superclasses generalize behavior. It follows that a more general state
and behavior is modeled as one moves up the superclass-subclass hierarchy (or
simply class hierarchy) and a more specific state is modeled as one moves down.

It is evident from our example that the notion of subclasses and superclasses is
relative. A class may simultaneously be the subclass to some class and a supet-
class to another class(es). Truck is a subclass of a motor vehicle and a superclass
of both 18-wheeler and pickup. For example, Ford is a class that defines Ford car
objects (see Figure 2-5). However, more specific classes of Ford car objects are
Mustang, Taurus, Escort, and Thunderbird. These classes define Fords in a much
more specialized manner than the Ford car class itself. Since the Taurus, Escort,
Mustang, and Thunderbird classes are more specific classes of Ford cars, they are
considered subclasses of class Ford and the Ford class is their superclass. How-
ever, the Ford class may not be the most general in our hierarchy. For instance, the
Ford class is the subclass of the Car class, which is the subclass of the Vehicle
class. Object-oriented notation will be covered in Chapter 5, the chapter on object-
oriented modeling.

The car class defines how a car behaves. The Ford class defines the behavior of

Ford cars (in addition to cars in general), and the Mustang class defines the be-
havior of Mustangs (in addition to Ford cars in general). Of course, if all you

FIGURE 2-5
Class hierarchy for Ford class.
Vehicle
Car
Ford

Mustang Taurus Thunderbird

CHAPTER 2: OBJECT BASICS 23

wanted was a Ford Mustang object, you would write onl

f y one class, Mustang. Th
cllas.s' would deﬁne: exactly how a Ford Mustang car operates. This methodoligy i:
limiting because, if you decide later to create a Ford Taurus object, you will have
to duplicate most of the code that describes not only how a vehicle behaves but
also how a car, and specifically a Ford, behaves.

This duplication occurs when using a procedural lan i i

; s whe: guage, since there is
concppt of hierarchy and inheriting behavior. An object-oriented system eliminatr::z
duphcateq effort by allowing classes to share and reuse behaviors.

You might find it strange to define a Car class. After all, what is an instance of
the Car class? There is no such thing as a generic car. All cars must be of some
make and model. In the same way, there are no instances of Ford class. All Fords
must belong to one of the subclasses: Mustang, Escort, Taurus, or Thunderbird
Tll;i Carhclass is a formal class, also called an abstract class. Formal or abstmc;
classes have no instances but define the common behavi inheri
B e classes aviors that can be inherited

In some object-oriented languages, the terms su
- . perclass and subclass are used
instead of base and derived. In this book, the term
ity s superclass and subclass are

%&:l heritance
nf:en’tance is the.property of object-oriented systems that allows objects to be
buili from other.objects. Inheritance allows explicitly taking advantage of the com-
monality of objects when constructing new classes. Inheritance is a relationshi
between classes w_here one class is the parent class of another (derived) class Thg
parent cla§s also is known as the base class or superclass. Inheritance pro;rides
programming by ex'tension as opposed to programming by reinvention [10]. The
real advanta}ge of using this technique is that we can build on what we alreacly.have
a}x:d, more important, reuse what we already have. Inheritance allows classes to
fi e%rseznﬁa rttl:luste })ehz}wors and attributes. Where the behavior of a class instance is
im0 pz;r :] aassss‘;3 :.methods, a class also inherits the behaviors and attributes of
inh]:?ir t::i;?ple, the Car cla.ss defines the general behavior of cars. The Ford class
L ngtene:ral behavior from the Car class and adds behavior specific to
Anotl;er levetl) dnecessa:y to redefine the _behavior of the car class; this is inherited.
R o own, the Mus.tang class. inherits the behavior of cars from the Car
e even more sp@mﬁc }Jchavzor of Fords from the Ford class. The Mus-
i class then adds behavior unique to Mustangs.
meth?é"\:zutlgatt,e a:ll Fords‘ use the same braking system. In that case, the stop
e aﬁ:ﬁm?d in class Ford (and not in Mustang class), since it is a be-
i :e A objects of class Ford. When you step on the brake pedal of a
. i; A degnez .?to,g‘ m;;sage to the Mustang.object. However, the stop
B o i in the Mustang c_lass, so the hierarchy is searched until a
I o und. The stop method is found in the Ford class, a superclass of
o g class, and it is invoked (see Figure 2—6).
. imilar way, the Mustang class can inherit behavi
e : rit behaviors from the Car and the
aviors of any given class really are behaviors of its su-

24 PART ONE: INTRODUCTION

Vehicle
Car
I know how to stop
stop method is reusable
: Ford

Thunderbird

Mustang Taurus

2
% T I don’t know how to stop

stop (my Mustang)

FIGURE 2-6
Inheritance allows reusability.

straightforward process of inheritance pre-

perclass or a collection of classes. This
behavior into every level or reinvent the

vents you from having to redefine every

wheel, or brakes, for that matter.
Suppose that most Ford cars use the same braking system, but the Thunderbird

has its own antilock braking system. In this case, the Thunderbird class would re-
define the stop method. Therefore, the stop method of the Ford class would never
be invoked by a Thunderbird object. However, its existence higher up in the class
hierarchy causes no conflict, and other Ford cars will continue to use the standard

braking system.

DWe allows objects to change and evolve over time. Since base
classés provide properties and attributes for objects, changing base classes changes
the properties and attributes of a class. A previous example was a Windows object
changing into an icon and then back again, which involves changing a base class

between a Windows class and an Icon class. More specifically, dynamic inhert-
tance refers to the ability to add, delete, or change parents from objects (or classes)
at run time. .

In object-oriented programming languages, variables can be declared to hold or
reference objects of a particular class. For example, 2 variable declared to refer-
ence a motor vehicle is capable of referencing a car or a truck or any subclass of

motor vehicle.

CHAPTER 2: OBJECT BASICS 25

Motor Vehicle

4\

Truck Car Bus

Utility Vehicle

FIGURE 2-7
Utility vehicle inherits from both the Car and Truck classes.

2.9.2 Multiple 1

Some object-oriented systems permii a class-tainherit its state (attri
. 1 te (attributes) and be-
haviors from-mere=than one superclass. This kind of inheritance is referred to as

‘mulfiple inheritance. For example, a utility vehicle inherits attributes from both

the Car .and Tmck classes (see Figure 2-7). S —
Multiple inheritance can pose some difficulties. For example, several distinct

parent classes can de_clare a member within a multiple inheritance hierarchy. This

$zns;:3]n bec(t)hrgg a;t 1aslsue of choice, particularly when several superclasses define

. e method. It also is more difficult to understand i i

tiple inheritance systems. L

singl:i n\;vlay' t:f] acl:xievinfh the benefits of multiple inheritance in a language with

: eritance is to inherit from the most appropriat

ject of another class as an attribute. ppropriste class mad fhen ki ob-

’"@M

Po 2 2
b sl:'eﬁ:air;s “ﬁna_:y_t) and morph means “form.” In the context of object-oriented
morphi.;.m e (:h jects that can take on or assume many different forms—Poly-
Tiasees i1l B oosc a alt téle sam__e___g_peratp»n,,rggy behave differenﬂy on different
R [;] defines polymorphism.as the relationship of gﬁém
e T B ses‘ Y some common gugaclass; thus, any of the objects dcs-
ferenttawsay EFor eame is able to respond o some common set of operations in a dif-
i d ifferexil?rple’ cqn§1der how d.nving an automobile with a manual trans-
o l:l om driving a car with an automatic transmission. The manual
. mECha;ie(?a]“:s you to operate the clutch and the shift, so in addition to all
R h(zlrgrt_)ls, you also peed information on when to shift gears.
vehicles). the gh driving is a behavior we peiform with all cars (and all motor
’ pecific behavior can be different, depending on the kind of car we

26 PART ONE: INTRODUCTION

are driving. A car with an automatic transmission might implement its drive
method to use information such as current speed, engine RPM, and current gear.
Another car might implement the drive method to use the same information but
require additional information, such as “the clutch is depressed.” The method is
the same for both cars, but the implementation invoked depends on the type of car
(or the class of object). This concept, termed polymorphism, is a fundamental con-
cept of any object-oriented system.

Polymorphism allows us to write generic, reusable code more easily, because
we can specify general instructions and delegate the implementation details to the
objects involved. Since no assumption is made about the class of an object that re-
ceives a message, fewer dependencies are needed in the code and, therefore, main-
tenance is easier. For example, in a payroll system, manager, office worker, and
production worker objects all will respond to the compute payroll message, but the
actual operations performed are object specific.

2.11 OBJECT RELATIONSHIPS AND ASSOCIATIONS

Association represents the relationships between objecis;?%glgcs. For example,
in the statement “a pilot can fly planes” (see Figure 2-8J, the italicized term is an
association.

Associations are bidirectional; that means they can be traversed in both direc-
tiofs.perhiaps with different connotations. The direction implied by the name i
the forward direction; the opposite:direction is the inverse direction. For example,
can fly connects a pilot to certain airplanes. The jnverse of can fly could be called
is flown by.

An important issue in association is cardinality which specifies how man in-
stances.of one.class may relate to a single.instance of-an-associated class [12]. Car-
dinality constrains the number of related objects and often is described as being
“one” or “many.” Generally, the multiplicity value is 2 single interval, but it may
be a set of disconnected intervals. For example, the number of cylinders in an en-
gine is four, six, or eight. Consider a client-account relationship where one client
can have one or more accounts and vice versa (in case of joint accounts); here the

cardinality of the client-account association is many to many.

2.11.1 Consumer-Producer Association

A special form of association is a consumer-producer relationship, also known a3
a client-server association Or 2 use relationship. The consumer: roducer red:
tionship can be viewed as one-way interaction: One object réquests the service of
another object. The object that makes the request is the consumer or client, and
the object that receives the request and provides the service is the producer OF

FIGURE 2-8
Association represents the relationship among objects, which is bidirectional.

can fly flown by

Pilot Planes

CHAPTER 2: OBJECT BASICS 27

PrintServer |- Request for printing

Itemn

FIGURE 2-9
The consumer/producer association.

server. For example, we have a print object that prints the consumer object. The

print producer provides the ability to rint oth j i i
consumer-producer association. yeP e

2.42 AGGREGATIONS AND OBJECT CONTAINMENT
—_—— T

gg} e(;tt):ecl::t(s;; :{‘:?Et]ﬂle most t(aiasic ones, are composed of and may contain other
: ple, a spreadsheet is an objec

ijects that Tnay c.:ontain text, mathematical gon;z?;g,l)gisggooxgli; ?(I)]rc:hce];»ls &

ing dgwn ob;ects into the objects from which they are compo’sed is dccom' Fe:ak_

T%us is possible because an object’s attributes need not be simple data fp?;ll‘lon-

tributes can referenc; other objects. Since each object an_identity N i;'at-

can refir’to,other-objects. This is known as aggregation, where an atn%b?xl:: :aTJbe%

FIGURE 2-10
A Car object is an aggregation of other objects such as engine, seat, and wheel objecls
Car
[
Engine Seat Wheel

44 PART ONE: INTRODUCTION

of each other. It is possible to have a product that corresponds to the specification,
but if the specification proves to be incorrect, we do not have the right product;
for example, say a necessary report is missing from the delivered product, since it
was not included in the original specification. A product also may be correct but
not correspond to the users’ needs; for example, after years of waiting, a system

is delivered that satisfies the initial design statement but no longer reflects current
s that, when the specification is informal, it is dif-

operating practices. Blum argue!
ficult to separate verification from validation. Chapter 13 looks at the issue of soft-

ware validation and correspondence by proposing a way 10 measure user satisfac-
tion and software usability. The next section looks at an object-oriented software
rtcomings of traditional

development approach that eliminates many of the sho
software development, such as the waterfall approach.

3.4 OBJECT-ORIENTED SYSTEMS DEVELOPMENT: A USE-CASE

DRIVEN APPROACH

The object-oriented software deve
MAacro_Processgs: object-oriented an

efited implementation (see Figure 3-4).
The use-case model can be employed throughout most activities of software de-

velopment. Furthermore, by following the life cycle model of Jacobson, Ericsson,

lopment life cyele (SDLC) consists of three
alysis, object-oriented design, and object-ori-

FIGURE 3-4
The object-oriented systems development approach. Obiect-oriented analysis corresponds to transformation 1;
design to transformation 2, and implementation to transtormation 3 of Figure 3-1.

Build a
Use-Cases Model
Object
analysis
Validate/
Analysis test

Jteration and Reuse

Using TOOLS User Design classes, Build object Build user
CAGSE and/or satisfaction define attributes and dynamic interface and
00 programming usability & and methods model prototype
languages QA Tests g——P
T | T [User satisfaction tesh |
usability test,and |
Implementation Design quality assurance

CHAPT :
ER 3: OBJECT-ORIENTED SYSTEMS DEVELOPMENT LIFE CYCLE 45

Use i
case |

models
f
\J
i 8 L,] R, -
OO0A: Use
case model 00(2 af::t? i
on
I i
Design i B e i
classes B i
Ul i wiEms |
H
T — === —— |
amic 00A: Obj . LT
oty moﬁz.l“t OO0D: Dynamic Testing: Usage
FIGURE 3-5 . o seensrios

By following the life cycle m
odel of Jacobson et al
¢] ., W i
across requirements, analysis, implementation, and taest:::gduce desions that are tracesble

and Jacobson [11], one
: : can produce designs th
Jeepon ! . gns that are traceable across i
g ayn 2N ?zltghr:tlzlp?mentauor.l,‘and testing (as shown in Figure 3—1-;]0';“1-}?;“ i
. design decisions can be traced back directl . uire.
. Usage scenarios can become test scenarios Y 1o e feautre

Object-ori
/O/g oriented system development includes these activities:

*Object-oriented analysi
"/Obj . ysis—use case dri
Object-oriented design e
* Prototyping
* Component-bas
: ed develo
Incremental testing Pt

#bject-oriented s
oftware devel
a system of c :) opment encourages you to vie
ment, AlthOUg?)OEE f:;"e f’bJCCtS- Furthermore, it advocates incr\:mtztglrc:jbler? .
ice, by followin ih -01'_1ent.ed software development skills come onl 'ive -
g the guidelines listed in this book you will be on thz r‘fgl:lt It)racl;
rac

buildin
g sound applicati
aplers. pplications. We look at these activities in detail in subsequent

A

-1 Object.Ori
bjec:) t Oriented Analysis—Use-Case Driven
~orient, is phase of 5
. ed analysis phase of software development is{:()nccmcd wi

Stﬁm i i i

46 PART ONE: INTRODUCTION

other classes in the problem domain. To understand the system require-

ship t©
ments, we need to identify the users or the actors. Who are the actors and how do

they use the system? In object-oriented as well as traditional development, sce-
narios are used to help analysts understand requirements. However, these scenar-

ios may be treated informally or not fully documented. Ivar Jacobson [10] came
user—

up with the concept of the use_case, his name for a scenario to descr
computer system interaction. The concept worked so well that it became a primary
element in system evelopment. The object—oriented programming community has
adopted use cases 10 2 remarkable degree. Scenarios are a great way of examining

who does what in the interactions among objects and what role they play; that is,

their interrelationships. This intersection among objects’ roTes to achieve a given

goal 18 called collaboration. The scenarios represent only one possible example of
the collaboration. To understand all aspects of the collaboration and all potential
actions, several different scenarios may be required, some showing usual behav-
iors, others showing situations involving unusual behavior ot exceptions.

In essence, a use case is a typical interaction between a user and a system that
captures users’ goals and needs. In its simplest usage, you capture a use case by

talking to typical users, discussing the various things they might want to do with

the system.
Expressing these high-level processes and intemc@gs,\\mh_c stomers in a sce-
ario and analyzing it is referred to as use-case mo ing. The use-case model rep-
resents the users’ view of the system Of users” needs. For example, consider a word
processor, where a user may want to be able to replace @ word with its synonym of
create a hyperlink. These are some uses of the system, Or & system responsibility.

This process of developing uses €ases, like other object-oriented activities, i8
{terative—ONCE YOUT USe-Case model is better understood and developed you
should start to identify classes and create their relationships.

Looking at the physical objects in the system also provides us important infor-
mation on objects in the systems. The objects could be individuals, organizations,
machines, units of information, pictures, oF whatever else makes up the applica-
tion and makes sense in the context of the real-world system. While developing
the model, objects emerge that help us establish a workable system. Tt is necessary
to work iteratively between use-case and object models. For example, the objects
in the incentive payroll system might include the following examples:

The employee, worker, supervisor, office administrator.

The paycheck.
The product being made.
The process used 10 make the product.

Of course, some problems have no basis in the real world. In this casé, it cat

be useful to pose the problem in terms of analogous physical objects, kind of &
mental simulation. It always is possible to think of a problem jn terms of sofft
kinds of objects, although in some cases, the objects may be synthetic or esotent
with no direct physical counterparts. The objects need to have meaning only ¥

|.|. CSIgna ar: € num

CHAPTER 3:
R 3: OBJECT-ORIENTED SYSTEMS DEVELOPMENT LIFE CYCLE

the context of the application’s domai
omain. For exampl icati

be a payroll . .) ple, the applicati N
workgr):l.loper?i(::fr:;fgn d the tangible objects might be tlI:E p:;c?;:]?mam —
- Y , office administrator; and the intangible obj ck, employee,

t]:; entry screen, data structures, and so forth objects might be tables,

ocumentation i g)
e aflglygi(;nbljt asl;:)thle; important activity, which does not end with obj
fpear e the docu u be carried out throughout the system devel oeet
applies for documentat mentation as short as possible. The 80-20 rul s
A Sieicntation 'I'ht:,otr:‘i‘ ?(0. percent of the work can be done with ZOepgee::leralhtC
. ck is to make sure that the 2 .) percent o
ble and the rest (80 percent) is available to those (‘:’e\a?)p\frgc:[:efde?jlgnaccel?i-
OW. Ke-

member that documentation i
er that d and modelin iviti
modeling implies good documentation. § 8re not scparatc ectivities, and good

3.4.2 Object-Oriented Design_—

The goal of object-oriented desi,
: ; ign (O0D) is to desi PP C
e e e islecpaniaion of the resiie.
for_the us.er interf:Icneptz, t(lllznsl;/gstgl; ?: i;gndphase, o nﬁght LY ;:drgg;z;
Object-ori . g £ ata entry windo .
ject-oriented design and object-oriented analysis are d‘;’sst’i;"["c‘;zziwﬁgdows).
es

o . . :
be intertwined. Object-oriented development is. y-incremental; in oth
I 2 iin other

ot QAL AL

words, you start with object-ori
. ject-oriented analysi .
design, then d ented analysis, model it, create an object-orient
plcng Bt mvotont. The it and again, gradually refinin o
e i ystert. The activities and focus of object-ori S
nted design are intertwined—grown, not builg (see r;,?;tf’d ﬂysls
’ ure 3-4).

* Design and refine Classes.

. Desggn and refine attributes.

: Dengn and refine methods.

) Des!gn and refine structures. ~
Design and refine associations. .-

S

L

Ii.; TV

RCUSC. l'alhe i W I .

e.C
classes, asses, rather than asmall umber of complex

* Design meth ,
Ods, T

* Critique wh
at
= you Ihlave proposed. If possible, go back and refine the classe e
il S.

*3 Prototyping ”

ugh the obj :
Ject-oriented analysi
ant to constry analysis and design describ
. cta scribe the system fi .
IC prototy_pe of_ some of the key system co)r,“POne I;am;es, it
o2 B kit ! s shortly

a7

48 PART ONE: INTRODUCTION

been said “‘a _picture may be worth a thou-

after the products are selected. It has W
sand words, but a prototy is thousand pictures” [author unknown]. Not
Saly 1s this true, 1015 an understatement of the value of Software prototyping. Es-

ed early

sentially roto is. @ _Ver
stages of the product’s life ¢ cle for specific, exgerimental purposes. A prototype
enables. fiow casy or difficult it will be to implemeprsome |

> ___-_____c_.-_-»}l——-—r,’-‘
stem.-lt-also can give users a ¢ ance to comment On the

° _‘}ﬁgq_tuj,——es"f—mw
usability and usefulness of the user interface design and lets you assess the fit be- I

tween the software tools selected, the functional specification, and the user needs.
Additionally, prototyping can further define the use cases, and it actually makes

use-case modeling much easier. Building a prototype that the users are happy with,
basic courses of action

along with documentation of what you did, can define the
red by the prototype. The main idea here is to build a pro- |

for those use cases COVE
totype with uses-case modeling to design Systems that users like and need.
Traditionally, prototyping was used as a “quick and dirty” way to test the de-

sign, user interface, and so forth, something to be thrown away when the “indus-
trial strength” version was developed. However, the new trend, such as using
rapid application development, is (0 refine the prototype into the final product.

Prototyping provides the developer a means o test and refine the user interface
As the underlying prototype design be-

and increase the usability of the system.

gins to become more consistent with the application requirements, more details
can be added to the application, again with further testing, evaluation, and re-
building, until all the application components work properly within the prototype

framework.

Prototypes have been categorized in various ways. 1 e follcwvingcatggorie\sa!t{_~
some of the commonly accepte prototypes and- epresfww
viewing a pro AVINE 15 oWl strengths:

« A horizontal prototype

mr_@%wce (that is, it has the enti®
user interface that will be in the fu Tfeatured system) but contains no function:

ality. This has the advantages of being very quick to implement, providing @
£0oo rall fee - and allowing users 10 =valuate the interface o

fhe basis of their normal, expected perception of the system.]
s with complete-function

» A vertical prototype is.2 subset, of the. system fedfes S :
ality. The p cipal advantage of this method is that the few tmplemented
prototypes are a hybrid betwes

ons can be T oreat depth. In practice,
horizontal and vertical: The major portions of the interface are established S0/
user can get the feel of the system, and features having a high degree of riska®

prototyped with much more functionality [7].
« An analysis prototype is an aid for exploring the problem domain. This class
inform the user and strate-the_proof concepls:
#nt, however, and is discarded when it1%
osed by the P

prototype is used to
is not used as the
served its purpose. The final product will use the concepts exp

totype, not its code.
« A domain prototype js-an aid for the incremental development of

the ultips

CHAPTER 3:
OBJECT-ORIENTED SYSTEMS DEVELOPMENT LIFE CYCLE 49

ca-

sibility of the implementati :
wct [9]. on and eventually will evolve into a deliverable prod-

The typical ti i
i veglpweeksr?ilég::giid to produce a prototype is anywhere from a few d
e olve representatioi f‘z‘l:n:lh:llt{:l:e and function of prototype. Prototypia:;
ect, especially th er groups that will be afft :
pecially the end users and management members to asce::jt:t::l:z ttll:e -
€ gen-

eral structure of the prototy
: pe meets th i :
5" 1he purpose of this review is e r(;g::;{'ements established for the overall

@ demonstrate that the
de proto has been devel i
cation and that the final specification is appmpri;)tl;ed Bgsonding. o the.specily,

2-

user interface problems th
= ?t Ifeed to be addressed in the intermediate prototype

3. To gi
coulg;v;e r::cnzﬁgx’n;’nt;ﬁ agd everyone connected with the project the fi i
rd . . .) glimpse of what the technology can pr;?icggr ‘

The evaluation can be .

i, A performed easily if the ne :

ily z"altl‘_’ble- Tesnng_considcrations must be incorpi)ersast?g‘suppomng data is read-
sequent implementation of the system. into the design and sub-

< ItD[Dt)pmgls a LISEfI'] CXCICISE El't all ____...3 3 g : : :F 1ent IIl fEl:[’

| ar ll] i

cations to th i i
e specification and even can reveal additional features or

problems that were not cbvious until the prototype was built

3.4 *"l‘llp

e m—t

to assembly from prefabricated componen et oo e
s an proccs svbe . keSSt Tt othenmse would be gro
. gL emgnécl ag;og:fits% from automobiles to plumbing fittings to Péo-
:xreo.dlfce[lsl \lvarg;:dmarkets for thels; lfrgfl:ittlscxf)ﬁl;lfg)tme _Wa}I'_EUSiIleSS applicatiOIfS’
) e s prod exist. Low-cost, high-qualit

B o i o odern manuffictunng has evolved to exploit ;
marke.t i fmmg ay’s market requirements: reduce co ! me to
3 1 . prebuilt, ready- b
frr:"('i:l;‘ozol;t{;:rgli ;:ustomjzation t:)t’a:‘Zittee(:l i?:?trc):r)r?:r]:s[,lgl]n wdd value end i

{echnologies, e c}l:lapnc:n;snts are built ?nd tested in-house .usin a wid
plef{computer- are en in’eering C‘XISE r?: glz

ow theirus n
€rs to rapidly develop information " g
The main goal of CASE

2 1] au.t v])
. .

= 210 '-l-'_}.“u. 'n a
L d 5¢
2Y. and automatgilc codeo elﬂ eg;gted software tools, such as modelin thod
generation. However, most often, the code ge%l’el::: db .
t4 e y

. . Development
anu}acmrers long ago learned the benefits &m - |
C

BO PART ONE: INTRODUCTION

CASE tools is only the skeleton of an application and a lot needs to be filled in
by programming by hand. A new generation of CASE tools is beginning to sup-
port component-based development.

Component-based development (CBD) is an industrialized approach to the soft-
leopment process. Application Wm-
ilt, pretested, remmm oper-
ate with each other. Two basic ideas underlie component-based development.JFirst,
the application development can be improved significantly if applications can be
asermbled quickly from prcfabricated?ﬁftware components. Yecond, an increas-
IngtyTarge collection of interpretable software components could be made avail-
sbic 1o developers m both general and specialist catalogs. Put togethier; THEse two
ideas move application development from a craft activity to an industrial process
fit to meet the needs of modern, highly dynamic, competitive, global businesses.
The industrialization of application development is akin to similar transformations
that occurred in other human endeavors.
developer can as emble component truct a complete software
stem. Gpmponents themselves may e constructed from other components and”
so on down to the level of prebuilt components oF old-fashioned code written in a
language such as C, assembler, or COBOL. Visual tools or actual code can be used
to “glue” together components. Although it is practical to do simple applications
using only “visual glue” (e.g., by “wiring” components together as in Digitalk’s
Smalltalk PARTS, or IBM’s VisualAge), putting together a practical application
still poses some challenges. Of course, all these are “under the hood” and should
be invisible to end users. The impact to users will come from faster product de-
velopment cycles, increased flexibility, and improved customization features. CBD
will allow independently developed applications to work together and do so more
efficiently and with less development effort {1 31

Existing (Jegacy) applications support critical services within an organization
and therefore cannot be thrown away. Massive rewriting from scratch is not a vi-
able option, as most legacy applications are complex, massive, and often pootly
documented. The CBD approach to legacy integration involves application wrap-
ping, in particular component wrapping, technology. An application wrapper sur-
rounds a complete system, both code and data. This wrapper then provides an in-
terface that can interact with both the legacy and the new software systems (see
Figure 3-6). Off-the-shelf application wrappers are not widely available. At pres-
ent, most application wrappers are homegrown within organizations. However,
with component-based development technology emerging rapidly, component
wrapper technology will be used more widely.

%Tpofmare components are the functional units:g_fj_pmgram, building blocks
o ﬂgm@Wﬂsoﬂwm component can request a.seT-
vice ﬁom,mgMpMown services on request. The delivery
SF services is independent, which means that componerits work together to ac
complish a task. Of course, components may depend on one another without in-
terfering with each other. Each component is unaware of the context or inner work-
ings of the other components. In short, the object-oriented concept addresses
analysis, design, and programming, whereas component-based development is

CHAPTER 3:
ER 3: OBJECT-ORIENTED SYSTEMS DEVELOPMENT LIFE cYCLE 51

Component wrapper

Component wrapper

PPy s
[| e e L
.:c—lpu . il

Legacy programs Ld\l\

Legacy data

Open Connectivity - I'
. v gl 3w
I]
£
Component wrapper |
. ippe Component wrapper
|-._'" " _.L_
S [T
Legacy screens
i Legacy software
i packages RMDEC LIBRARY

Reusing legacy system via component wrapping technology

i . welo RAD) is a set of tool i
used to build an application faster than typicall§ 'Eo_sss)il:l:nwdi:ﬁctlr?cli?il;gfl;]hat Ct%n
_ r - me i

ods. The term often is used in conj P

sed 1n ‘conjucti i o S 1

held that; t . juction with software prototypir il

o achieve RAD, the developer sacrifices the. qfn alityty(ﬁ:u:}g;é I[;ri)sd:\vcltdf‘})y
; r

In fact, one s L
o %ust“:::lsiﬁ S:D application achieved a substantial reduction in time
[ﬁ) significant reduction in the individual software cycles

—

combi i i

ication quickl i i
y and incrementally implement the design and user require-

Inents, through tool i, Vi
R s s such as Delphi, Visu e, Vi

" the ¢ esign for an applicati
i over : pplication has been complet i
%lWea]::J%e (1)1f RAD is to build a version of an appligatiz(ri; rlzgcll)l bte e
el theysystemzd ave undert.ood the problem (analysis). Further, it dety—-p' nes
e Throes what it is supposed to do {design). RAD il‘l;-'OlV " num.
- Through each iteration we might understand the probl:liaal:?t'::t;

BRI

17380

52 PART ONE: INTRODUCTION

Real-World Issues o the Agenda

THERE'S NEVER ENOUGH UP-FRONT PLANNING WITH RAD

By Clair Tristram

What's the single jargest reason that RAD [rapid ap-
plication development] projects fail? Poor up-front
planning, according to the experts. “Planning is a
bad word these days, put | happen 10 think it's a
good idea" says Carma McClure, vice president of
research at Extended Intelligence inc., a Chicago-
pased consuliing firm. “You've got to have control
over the process.” Runaway requirements are a dan-
gerous problem with RAD.

i you choose RAD methodologies 10 develop
your application, you're vulnerable. You won't have 2
hefty set of requirements to protect you from users.
instead, the same users who are critical to the RAD
equation aré the very same people who can be
counted on to change their minds about what they
want. S0 how do you keep your RAD project on
track and on time? Here are some suggestions.

WRITE THINGS DOWRN
Sure, you've gotten rid of the onerous task of cre-
ating a hefty requirement document by choosing
RAD over the waterfall approach. But don't make
the mistake of neglecting 1o write down your busi-
ness objective at the peginning of the project, and
make sure your clients agree on what the core re-
quirements should be.

ap jot of people get stuck in what we call ‘proto
cycling’)’ says Richard Hunter, research director at
Gartner Group Inc., in Stamford, CT. “They don't
know what the business problem is that they're iry-
ing 1o solve, and in that case it can take a long time
to find out what you're doing”’

AVOID “SHALLOW” PROTOTYPING
RAD tools make great dermos, but can you deliver?

better and make an improvement. RAD encourages the incremental development

Make sure that your team understands the under-
lying architecture of the prototypes they develop
and that they can develop prototype features under
a deadline that actually works, rather than just
look pretty. “RAD helps you build a model quickly”
notes McClure. “Users can make suggestions and
virtually see the resuits. But you need to control
your team.

INVOLVE USERS IN COST-BENEFIT DECISIONS
Your users see a prototype interface that seems 10
change effortiessly from iteration to iteration and
they may not understand the amount of effort it will
take to actually get those changes implemented.
Make sure they do.

spe've eliminated the problem by being very
specific about the impact of any changes and in-
volving the user team in setting priorities,” says
Rick Irving, director of worldwide sales systems at
American Express Stored Value Group, in Salt Lake

City.

DON'T DEVELOP APPLICATIONS 1N ISOLATION
“RAD makes it easy 10 come up quickly with some-
thing good for @ single group, but that doesn't sat-
isfy the needs of additional groups,’ McClure says.
sWill you throw it away and stari over?’

To avoid clusters of applications with fimited util-
ity, McClure recommends honing an understanding
of how your RAD project fits into your company's
strategic system plan before you begin. That, and

always build with reuse in mind.

e
Source: Clair Tristram, “There's NevVer enough up-front
planning with RAD” PC Week 13, no. 12 (March 25, 1995)-

aggrogph’of-“gmw, do not build” sofiware.

.~ Prototyping and RAD do not replace the objcct—oriented software dew-:.loprﬂe‘“l
model. Instead, in a RAD application, you g0 through those Stages in rapid (or %
little more in the next iteration of the prototype:
One thing that you should remember is that RAD tools make great demos: Ho¥
ever, make sure that you can develop prototype features within a deadline that 8
tually works, rather than just looks good.

complete) fashion, completing a

-0 ding (encapsulati
Conformance to naming standall(')c;ls).

CHAPTER 3:
3: OBJECT-ORIENTED SYSTEMS DEVELOPMENT LIFE CYCLE 53

3.4.5 Incremental Testing

E;you—wait until after development to ¢ i
STy [est an application for b

)’Oﬁegfj;]% ::k:frzs'tll‘r'lug ttlrlloulsgands of dollars and hours ofrtirrlgs E}n'l:atpse rfs}:rrtla:ce,
. st in 1992{*Qur testin ; at hap-
was cost testing was very complet i
2 E'm"ﬁ%rc}%%& 2 lortecSJl_f r:oney and would add months onto a ﬁﬁ%ztizggsgé?d’ bgt .
[6]. I one case testinnt Oa;;d:]noTogy and strategic planning at the New Y(?l{:l baml;
transfer applicat{on Thi) Tf nearly six months to the development of a fun[;l

= ! - Ihe 3;‘;) lem was that developers would turn over applicatio .
ppgémmueted. Since the QA gr;)up)‘;V%fs?:,lfiiz;’ut;ésgr_‘lg t(;‘nly after development was co:ﬁ

mn it .
tlllf_o_f the system characteristics until it came tiriéntl: is[t)lan’ B 82

—

3.5 REUSABILITY

: ject-oriented system devel ' -

th : : velopment.is.reusabi is i

e most difficult promise to deliver on. For an object tg' Jreall_m,r i'letyu; :tl:lg this 1;
 be really , Muc

more effort 1ust be s v ons g t to b
ment team must haev:pt;:t:; St!rgol:lltnﬁ it. To :eiwer a reusable object, the develop
. g me to design ilitv i R A
tential . gn reusability 1
pove opn:::i]:ef;;s of reuse are clear: increased reliab i-l@r@i%mgjwtm—
: improved consistency. You must effectively evaluate :Jgssttfl?;

saffware components-
\ ponentsfor reuse b i i .
the intended applications [2]: y asking the following questions as they apply to

e
» Has my problem d?
%mywm ally:solied? -
+ What h)
as been done before to solve a problem similar to this one?
To answer these.guesti ‘
. tions, we need detail i
ing softw .. ailed summary informati :
= Om:re :or(r)lponents. In addition to the availability of thea;ii%zrﬁotl'l o
simedplsy A Ethean gie;:?;fh l;’ne,chamsm that allows us to define the candid:téonl;'we
tem for reuse would fu e broadly or narrowly defined queries. Thus, the id c; .
e nction like a §hlled reference librarian. If yoi.l hav eal sys-
e afrro wi:’;ft all poten.tlal sources could be identified and thz s (?;es‘
y prompting. Some form of browsing with the ca;:bijleif;

10 provide detailed' i -
nformation :
could be looked up directly. would be required, one where specific subjects

Th
e reuse strategy can _be based on the following: '

Creation =
ncourag:::e:dmmsuaﬁqn of an object reposjtory.
velopment, Y. strategic managemen pposed to ¢ d

- - onstant rede-

lablishing tar:
- gets for a) .
ie., Somﬁmﬁog]?;cc:;tagc of the objects in the project to be reused

62 PART TWO: METHODOLOGY, MODELING, AND UNIFIED MODELING LANGUAGE

To get a feel for object-oriented methodologies, let us 1ook at some of the meth-

ods developed in the 1980s and 1990s. This list by no means is complete [14].

« 1986. Booch (6] developed the object-oricnted design concepl, the Booch

method.
«+ 1987. Sally Shlaer and Steve Mellor 1211 created the concept of the recursive de-

sign approach.
. 1989. Beck and Cunningham produced class-responsibility-collaboration cards.

« 1990. Wirfs-Brock, Wilkerson, and Wiener [23] came Up with responsibility-

driven design. .

+ 1991. Jim Rumbaugh led a team at the research labs of General Electric to de-
velop the object modeling technique (OMT) [191.

« 1991. Peter Coad and Ed Yourdon {11} developed the Coad lightweight and pro-

totype-oriented approach 10 methods.
« 1994, Ivar Jacobson (16} introduced the concept of the use case and object-

oriented software engineering (OOSE).

These methodologies and many other forms of notational language provided

d architects many choices but created 2 very split, competitive,

system designers an
and confusing environment. Most of the methods were very similar but contained
a group of practi-

a number of often annoying minor differences, and each had
tioners that liked its jdeas. The same basic concepts appeared in very different

notations, which caused confusion among the users [14).

The trend in object—oriented methodologies, sometimes called second-generation
object-oriented methods, has been toward combining the best aspects of the most
d of coming out with new methodologies, which was the

popular methods instea
tendency in first-generation object-oriented methods. In the next section, to give
ome of the most

you a taste of object-oriented methodologies, we will look at s
popular ones.

4.2 SURVEY OF SOME OF THE OBJEGT-ORIENTED
METI'IODOI.OGIES

Many methodologies are available to choose from for system development. Each
methodology is based on modeling the business problem and implementing the ap-

plication in an object-oﬁented fashion; the differences lie primarily in the docu-

mentation of information and modeling notations and language. An application caf
and provide the

be implemented in many ways to meet the same requirements
est noticeable differences will be in the trade-offs and

detailed design decisions made. Two people using the same methodology may pro-
does not necessarily

duce application designs that look radically different. This
ht and one is wrong, just that they are different. In the fo

mean that one is 1ig
lowing sections, We look at the methodologies and their modeling notations d€-

veloped by Rumbaugh et al., Booch, and Jacobson which are the origins O

Unified Modeling Language (UML).
suited fOr

Each method has its strengths. The Rumbaugh et al. method is well-

CHAPTER 4: OBJECT-ORIENTED METHODOLOGIES 63

d .

al. method is good for i
; > producing user-driv .
produces detailed object-oriented design nf:d:?salysm models. The Bo?ch LG

o Y

4.3 RUMBAUGH E'I';AI. 'S '
_ ’$ OBJECT M
o : ot ODELING_TECHNIQUE
workers describes a method for th
o : & analysis, desi i .

fenTusing an obiect-ori ‘E"-an '_'_’JS"‘*“ ESIgn,_and impleme; i

iy e o e st

Sfitbutes, method, inheritan objects making up a system. Details sych-a]en-l

d";n o oclion iorxof = ce, a!_ld association also can be expressed 'ls-c he
jects within a system can be described using'm:z:s);\}'i“?e

y-

pamic model. This model lets i
v s you specify detailed iti
scriptions within a system. Finally, a process descﬁ;tt?:}; t;?::ls“‘olls and their de-

relationships can be ex : c
. pressed using OMT’s functi umer-producer
four phases, which can be performed iterativ(,’]y:m":lonal model i’oi!.l s of

ik lysis. i
5 %}%ﬁ% I?hen TCTSE:_S areI objects and dynamic and functional modéls
System de ugth he results are a structure of the basic archi '
Wohics: dg with high-level strategy decisions. chitecture of Qe s¥s-
b 0 Eﬁg L esign. This Phase produces a design documen isti etailed
. o static, dyhalpl_c,..and__funcﬁonalmﬁs cument, consisting.of.deta
Implementatian. This activity produces rf,usable, extendible, and robust code

OMT separates modeling into three different parts:

N it
. An obj
[Ji A%%%g%ﬂﬁemed :!rd-lg*o_f)iect model and the data dicti
3. Afinch del, presented Dy the state_diagrams ztel
||' A functional model, presented by data flow :nd consﬁni:ent COSCagane

—

4.§.1 The Object Model

The obj
ject model describes th

lationships to : e structure of objects in a system: their identi
semzrﬁ‘apﬁé:%;r 9%.“5__ attributes, and operations. Thz o%%c:h%éa!qf nan. e
containg classes inte an_pbf;; dlg_gﬁl;_am’gsce Figure 4-T)"The objef:t lgi;g;e-
individual ob ects. The associati association lines. Each cla >
ts. The association lines establish relationshipsssa:;[::;e tlll'lt: 21 e
asses.

Each association li
; tion line repres i
objects of another ClassF ents a set of links from the objects of one class to the

'r -I_3I2 |
; i p'l‘hc.; OMT Dynamic Model
L_OMT provides il
a detailed and comprehensive dynamic model, in addition to Jesti
y¥n odel, in addition, ting

you depict sta

: tes, fransiti v
gRAm s a n ons, events, and actions. [The o
om etwork of states and events.(see Figure Et—e OMT state transition dia-

%F;,.—“SD&-&-Which T 2). Each state recei
le depends - me it makes the transiti g cives.one
th = ion to th :
~PERAS on the current state as well as the evcntsto & next state. The next

que_(OMT) presented by Jim Rumbaugh and his c:j:r- '.

64 PART TWO: METHODOLOGY, MODELING, AND UNIFIED MODELING LANGUAGE i
| GHAPTER 4: OBJECT-ORIENTED METHODOLOGIES 65

Client No account has been selected
firstName L
las‘réf;: ClientAccount i
pin Account Transaction
. Nothing i
number g is
b:lancc AccountTransactiont ﬁ:%ﬁ ! b“:';m“‘;‘ h:;-sd
L ————— N selec
deposit
withdraw
createTransaction
Selected checking
or savings accouny Sclc:(t:::!:::d "
Select transaction
CheckingAccount e (withdraw,
- sit, transfi
Withdraw CheckingSavingsAccoun! i) amount
SavingsAccount
FIGURE 4-1
classes and the filled triangle Confirmation

The OMT cbject mode! of a bank system. The boxes represent

represems specialization. Association between Account and transaction is one t00 many; since
one account can have many transactions, the filted circle represents many (zero or more). The
relationship betwen Client and Account classes is one to one: A client can have onfy one ac-

count and account can belong 1o only one person {in this model joint accounts are not allowed).

FIQURE 4-2

g a
Stat t]'ansmon d[a ram for the h ||k appllcathl'l
[:] user interface. The IOUIId boxes |ep|ese||t

4.3.3 The OMT Functional Model

The OMT data flow diagram (DFD) shows the flow of data between different
tve-metod

processes in a business. An OMT DFD provides a simple an

1gN your system usi . : t-Qrie

Yy _em-g:::f ;hesoti]ect %aradxgm. It covers the ir_l_a(rly;li‘:tailzl di S=9-l-l
ystem. Booch sometime S ign

(ven th s is criticized I

every design decision if0 ugh Booch defines a lot of symbols to &oc_u?ﬁ%

B i s disgrams. You stat with Tl aciice Tl JoTBeve

igures 4-4 and 4-5) i iagrams. You start with class and obj 4L you Rever

A = in the analvsi 0 Ject dlagrams (See

eps_Only when ysis phase and refine these di agrams (¢

s is where the B ﬁhr?;‘di;g generate code, do you add lgfgglssg‘m\ga;}ous

de. The Booch - € shines, you can do . §—

: ethod consists can document your object-oriented

: .i,lss diagrams £ of the following dla_grams: ;

L

5T describing business processes without focusing on the details of computer EVER

tems [3].
Data flow diagrams use four primary symbols:

1. The process is any function being performed; for example, verify Password 0f

PIN'n the ATM system {see Figure 4-3).
2. The data flow shows the direction of data element movement, for example, PIN

code”
3. The data store is a location where data are stored; for example, account 1528

data store in The ATM example.
4, An exw is a source or destination of a data element; for example, e

ATM card reader.

Overall, the Rumbaugh et al. OMT methodology provides one of the strong®s!
tool sets for the analysis and design of object—oﬂented systems.

66 FART TWO: METHODOLOGY, MODELING, AND UNIFIED MODELING LANGUAGE

———

Carsatium
bad
ATM card bank code sgl':wt bank R L L LY LY, ...??Rkugo.-..a-ﬁ b
reader =
card cod invalid
= select Cal'd ! p-‘-‘?!l. 4 Ea-,l.'?.?(‘)ti'e. ’
: card authorization
assword bad password
User keyboard P verify password vaa u-u?u.......m- »
entry
account | £ bad account
select accoqnt ’
User screen
selection
ATM data flow diagram
i’ transaction failed >

system architect

——— Comment = |
OMT data flow

Legend: | Process @ Data store

FIGURE 4-3

OMT DFD of the ATM
etlement movement. The circles represent processes.
data store reveals the storage of data.

Data flow —— External entity :

system. The data flow lirfés include arrows to show the direction of data
The boxes represent external entities. A

The Booch methodology prescribes a macro development process and a micro
development process. g

e - =

4.4.% The Macro pDevelopment Process N

e Macro process serves as a controlling framework for the micro process and

can take weeks or even months. The priniary concern 0 6 macro progess is tech-
nical management of the system. Such management is interested less in the actu

object-oriented esipm thati il how well the project corresponds to the require-
ther it is produced on time. In the macro process, the tra-

ments set for it and whe
ditional phases of analysis and design t0'a large extent are preserved [4].

{'The macro development process consists of the following steps:

1. Conceptualization. During conceptualization, you establish the core require-
ments of the system. You establish a set of goals and develop a prototype to

— e ————————
prove the concept.

2. Analysis and development of the model. In this step, you use the class diagram -

to describe the roles and responsibilities objects are to carry out‘in'peffo—rﬁing

CHAPTER 4; OBJECT-ORIENTED METHODOLOGIES 67

Car

color
manufacturer
cost

superclass

Inherits

FIGURE 4-4

Object modeling usin i
g Booch notation. The e
class Taurus is subclass of the class Ford. arrows represent specialization; for example, the

the desi i
R desii':g ‘E:l;:yor of_ the system. .Then, you use the object diagram to describe
S desired bel ior. of the system in terms of scenanios or, alternatively, use th
B cteraction di gra:tz to describe behavior of the system in terms of scen‘arios)
. e SYSt rchitectyre. In the desi ‘
s g alg ystem. a cLure. sign phase, you u
mgf:;r: t:ia:; ggc‘:;ded\yhat classes exist and how they relate to zach ostilgrlclgteasts
e et é:::e 1%511;? ;(c)) decnd:th what mechanisms are used to regula‘te h:w:
. . , you use the module di
gRscts . agram to map out wh
tennjne(:oo\?re:é hsl;;;l(l:d be decl;xied. Finally, you use the procels)s diagraflzi: Zceh
. ssor to allocate a process. Also i ;
4 gnr 1;1u.lt1ple processes omeach relevant [l:rocessor determine the sehedules
. Evolu] 1 i '
ératibﬁgrif?rro :jmplementat:or_a. Successively refine the system through many it
2 uce a stream of software i i i
1 a st re implementation
eases), each of which is a refinement of the prior one * (or exeeniable re-

_-.Wtﬂﬁ*
4.4.2 The-Micro-Deve
. lopment-Pricess
. magf‘; de\felo ment process has its own micro Th
Process-i o > on Thicto-deuelopment-piacesscs
group of soﬁw;:zl ; ption.of-the.day:to-day_activities by ra.singlg.malel
the R Ysi'é"'—c'l—__?!g_gpers’ which could look blurry to an outside vie i
15 and design phases are not clearly defined iewer, since
: f/

S /)

68 PART TWO: METHODOLOGY, MO

“)r,tr"

L

e

DELING, AND UNIFIED MODELING LANGUAGE

Operator::TumOffAlarm

Enabled

SoundAlarm

Silenced Sounding

SilenceAlarm

Enable Disable

Disabled

FIGURE 4-3
An alarm class state transition diagram with Booch notation. Thi

of a class based on a stimutus. For example, a°
cessing, followed by a transition 10 another state. |

changed to alarm sounding state and vice versa.

AlarmFixed

n this case, the alarm silenced state

The micro development process consists of the following steps:

enti objects. .

2. Identify class @ .
3. Identify class and object relationships.

W 4 Identify class and OW implementation.

0‘0"\;}/
) -

%

7

ot P
4.5 TH BSONET AL. METHODOLOGIES
-’@acobson et al —ethodologies (e.g{c)aj/ect-oriented Business Engineeriag”

oriented Software Efﬂggﬂing (OOSE), and Objectory) ©
e ability berween the different phases, both f

(OOBE);object
entire lifecycls and stress trace i
and backward. This traceability E@les-reu i
bly much bigger

At the heart of their methodologies is the use-case concept, whic

Objectory (Object Factory for Software Development).

451U
Use cases are scenarios for understanding system req

interaction between users

s diagram can capture the state

.—--._.?-—.:.F——' R
stimulus causes the class 10 perform some pro-
can be

se-of-analysis and design work, possi

e - e .
factors ifthe Teduction of Jevelopment time than reuse O code-
h evolved with

pirements. A use €ase is
and a system. The use-case model captures the g0 f

CHAPTER 4: OBJECT-ORIENTED METHODOLOGIES 69

the user and the responsibility of the system to its users (see Figure 4-6). In he

. : ystem to it rs (see Fig

requirements analysis, the use cases are described as one (of thellelowin)'[ZI!,] t
liowing [4):

+ Nonformal text with n
o Text, ea i
o.xead but_with a clear flow of events to follow (this is a recom-

ended style). S
U W M {mlr™

a Formal style using pseudo code.
/ Ve
0,

- U-‘jh] - A
- ’)
« How and when the use case begins and-ends W 2 .
« The interacti e L its. :)
tion between the use case and its actors, including when the interac @ \/\’

tion occurs and whar is exchanged.

i T
= eppe— .

Lz
The use case descrpfion must contain

pw U

in the systemn.
« Exceptions to the flow of events.
» How and wh .
_ en concepts of the problem domain are handled.

Every single use case should describe one mai
sy main flow of events. An i
o ‘;S :t::ls efl::)v-fi :cf] 3;:11:1: coultfl .be added. The exceptional use case :::3:151;0::!
B o e additional one. The use-case model employs extends
T S t}; ;m t; extends relationship is used when you have one use
B e e (c))ri er ulse case but c.loes a bit more. In essence, it extends
ittty o ingl;;f use case (like a subclass). The uses relationship
Use cases could be viewedl ase T::icl:':taecssesl;

ra sHacL_McLuLCHSLi&DDL

complete and has no acto initiate_it-but is used bAn = use case. This in-

heritance could be i gs th
used in several levels. Ab:
. Abstra
have uses or extends relationships. o se cases also are fhe oncs et
v Mot

FIGURE 4-6

Some uses of a libra
ry. As you can see, the .
e L , these are external views of the libra
capture all of the :mb_er. The simpler the use case, the more effective it will Ly sys_tem frgm an
otails right ai the start; you can do that later il be. It is unwise to

Library

/ Checking out books

over the

orw Gerting an interlibrary loan

Doing research

i

Reading books, newspapers

/

an .
Purchasing supplies

|

Supplier

70 PART TWO: METHO

DOLOGY, MODELING, AND UNIFIED MODELIN

4.5/2 Obiect-Oriented Software ggineerin 0

G LANGUAGE

jectory

Objector_'y, is a method
= development of

Object-oriented software engineering (003
W‘deve opmment with the specific aim to fit

large, real-time systems

opment, Stresses th
(see Figure 4-7), including analysis, design, validation,
scenario begins with a user of tre-System Initating a FEequ

evenis.

The system development
process for the industrialized development of
design. It is an approach
derstanding the ways 1
sis and design models around sequences O
oduces systems that
hanging usage. Jacobs
us application are

narios, the method pr.
adapting more easily to €
veloped and applied to numero

systems.

Objectory is bu

at use cases are i

_The development process,

nvolved in sever

method based on 00S
software, based on a use-case driven

to object-oriented analysis
which a system ac

tually is us

called-use-

_ case_dpiven devel-
al phases of the development

and testing. The use-case

dence of interrelated

E, Objectory, is a disciplined

and design that centers on uf-

ilt around several different models:

o Use -model.

case) of the system’s behavior.

e Domain object mo

main o]CCt moael.

"« Analysis object model. The analy
. “(implementation) shou
‘e Implementation model. The 1
! tion of the system.)

. Tg_;_umdel. The test Mo

del. The objects of the “re

The use-case model defines the outside

del constitutes the test pl

ed. By organizing the analy-
£ user interaction and actual usage sce-
are both more usable and more robust,
on et al’s Objectory has been de-
as and embodied in the CASE tool

(actors) and inside (use
al” world are mapped into the do-
sis object model presents how the source code

1d be carried out and written.
implementation model represen

ts the implementa-

ans, specifications, and repors.

N
¢ o
FIGURE 4-7 il
The use-case model is considered in every model and phase.
Use-case model
>
[
S
Express in \ Tested in ‘
l Structured by Realized by Jmplemented by l
FHO—»O -
O 0¥ | | 0¥ 25
Domain object Analysis Design Implementation Testing
model model model model

model

CHAPTER 4: OBJECT-ORIENTED METHODOLOGIES 71

l 'ﬁ in i i p

veloped system is taken out of service.

"

4.5.3 Object-Oriented Business Engineering

Ob'eC[-Oﬁxellted business engi i E) is ob
] gincern (OOB) s obj i
levelk- Use cases ag . - ject modeling at the en]
g o ! i : g. : t?l'pill'lise

throughout the software engineering processes

« Analysi alysj
_%Emmmsmwwmof the

n-

vironment. This reduces complexity_and promates.maingainability th
_over the life

of thE system, since the descripti
= ' . ption of the system will be ind
it et v 10 o ol b
Yourdon's [lpl] or g- o object model, but refers the developer to C eV: o
e ooch’s [6] discussion of the topic, who suggest that fl'? e
b fall dz\lfitll(l::n?:nltnifvi;: 3(1; thg system to promote discussionas I: t(l:::;
. m i : :
t?lerelfgre Bt rosult in the most ain model will not localize changes and
should be developed just enou o]
At e] gh to form a base of i ©
quirements model. The analysis process is i of understanding for the re-
R process is iterative but th i
CObS)(’)S;Selt'n:lde:lsl should be stable b.efore moving on to sub:eéigz:rfnn;znis N
. suggest that prototyping with a tool might be useful durii ;-t'::_’_
is

phase to help specify user interfaces.

» Design and implem i
esign and implementation phases. The impl .
identified fo = e implementation environm
d for the design model. This includes factors such as DatzlllaggmguMStabe
n-

agement System (DBMS). distributior
gwﬂmﬁb%m@g%gf_gmsg constraints due to the pro-
e coimponent %1branes, and incorporation of graph-
- © ° m13; o tr}:]a;ya?e Po;s‘];ble to identify the implementat?on
e urre nalysis. The analysis objec i

gn objects that fit the current implts:mv::ntationyenviro-:nmtasni‘re translaced into

g

3 - .

i d system testing.

Jnit testing -integration.testing. and system testing

An emerging idea in systems devel i
3 elopme i
S 1 i ;a;o::ni:agfdag%ﬁiif and ol rom refsbricted ad
;‘::gf(:!rlsr‘:gltii?; Thl;sl:l htzvz ;Cst;a :t%cab%lhar; tfi;:tc!t?;;gsii!tfigaitg?:yo:gti;?: zncg : ll‘lf}::
;;l‘:lf;‘r"’y‘“; fz;mr;i cr::ic:llgw; I::;i)s:rlx'nontl:;e iﬁ:‘;u:’tzr:‘:i?(:iigfﬁl)tgg{p(;f)liilt;rsu::dtz
tons. The primary ocus e i e
pport sound engineering architecture and design [g].

T8 PART TWO: METHODOLOGY, M

ODELING, AND UNIFIED MODELING LANGUAGE

Even though they are related in this manner, it is important to recognize that frame-

works and design patierns are two distinctly separate beasts: A framework is exe-
cutable software, whereas design patterns represent knowledge and experience
about software. In this respect, frameworks are of a physical nature, while patterns
are of a logical nature: Frameworks are the physical realization of one or moie

software pattern solutions; pattems are the instructions for how to implement those

solutions {5}
Gamma et al. describe the major differences between design patterns and frame-

works as follows [15k

« Design patterns are more abstract than frameworks. Frameworks can be em-

bodied in code, but only examples of patterns_can be embodied in code. A
ks is that they can be written down in programming lan-

strength of framewor
guages and not only studied but executed and reused directly. In contrast, design

patterns have to be implemented each time they are used. Design patterns also
explain the intent, trade-offs, and consequences of a design.

o Design patterns are smaller architectural elements than frameworks. A typical
__framework contains several design patterns but the reverse is never true.

« Design patterns are less specialized than frameworks. Frameworks always have
a particular application domain. In contrast, design patterns can be used in nearly
any kind of application. While more specialized design patterns are certainly
possible, even these would not dictate an application architecre.

4.8 THE UNIFIED APPROACH.-.
ctices that have proven

The appto;él'; promoted in this book is based on the best pra

successful in system development and, more specifically, the work done by Booch,
deling efforts. The uni-

Rumbaugh, and Jacobson in their attempt to unify their mo
fied approach (UA) (see Figure 1-1) establishes a unifying and unitary framework
around their works by utilizing the unified modeling language (UML) to describe,
model, and document the software development process. The idea behind the UA

is not to introduce yet another methodology. The main motivation here is to colk

bine the best practices, processes, methodologies, and guidelines along with
notations and diagrams for better understanding object—oriented concepts and SYS°

tem development.
The unified approach 0 software development revolves around (but is not

limited to) the following processes and concepts (se€ Figure 4-8). The processes
are:
Use-case driven development
Object-oriented analysis //

Object—oriented design -~
| Incremental development and prototyping

N ?'ontinuous testing
L%

CHA :
PTER 4: OBJECT-ORIENTED METHODOLOGIES T9

* Develop use
% i -~ cases, activit De Identi
ases, y I velop entify classes,
K diagrams P | coraction [relationships, [4—P Refine
entify actors [_prototyping | diagrams attributes, and and
: methods iterate
i . : |
Construction |. O-OAnalysis |
Component |
based Repository I
development Odf use-cases i ALayeredh
esign, UL pproac
Contil.mous and past
testing experiences, '
User_gatisfacﬁon p patterns, =
usaall:nhty tests, c"“11'1'"3:tai.lc)n !
quality an UM
assurance le I traceabilit L Based
. x Modeling
Design classes | 0-0 DeSign |
their attributes, Apply Design || Design vi
methods, —p{ | Axioms > and agcc e;:w User satisfaction
association, L §—— Build UML layers and — ?ensc:s U;ﬂbiluy
SmICtur; L, class diagram — prototypes - casal.:ed on
3 S
Continuous Testi
FIGURE 4-8 esting

The
processes and components of the unitied approach

The methods and technology employed include

Unified modelin
g language used f g
Layered approach. or modeling.

Ob
J p

Component-based d
evelopment (Alth
velopm ough, UA pro
pment, the treatment of the subject is beyongru::c:;,;g";}’?ﬁ:“;'bf‘;d de-
ook.

The UA allows iterati
erative develo .
tween the design lopment by allowing you to
gn and the modeling or analysis phases. It mal%:st;?;:itﬂgkfionh be
ng very

easy and departs fi .
tracking, tom the linear waterfall process, which allows no form of back
ack-

4,
8.1 Object-Oriented Analysis

Analysis is th
e process of extracti
must do to sati xtracting the needs of a
) [. system a
10 first un dersta;?cll ?1112 l(lisers requirements. The goal o¥ objec tiﬂ'i:::a:i the system
understanding how the Sé'felfsln of the problem and the system’s resp:nsﬁ)f};a_l[yms b:s
constructin use or will use th . ilities by
g g several model e system. This is acc :
ing what the els of the system. Th omplished by
system d . ese models concen .
system from the way i toi‘;sl rather than how it does it. Separating tE:t[e, (liln qescnb-
implemented requires viewing the system fro?ni;mr of a
e user’s

80 FART TWO: METHODOLOGY, MODELING,

AND UNIFIED MODELING LANGUAGE

perspective rather than that of the machine. OOA Process consists of the follow-

ing Steps:

1. Identify the Actors.
Develop a simple business process model using UML Activity diagram.
Develop the Use Case.

Develop interaction diagrams,

2.
3.
4.
5, Identify classes.

4.8.2 Obiect-Oriented Design
hensive object-oriented design method. Iron-

Booch [9] provides the most compre
ically, since it 1s 80 comprehensive, the method can be somewhat imposing to learn

and especially tricky to figure out where to start. Rumbaugh et al.’s and Jacobson
et al’s high-level models provide good avenues for getting started. UA combines
these by utilizing Jacobson et al.'s analysis and interaction diagrams, Booch’s ob-

ject diagrams, and Rumbaugh et al’s domain models. Furthermore, by following
Jacobson et al.’s life cycle model, we can produce designs that are traceable across
requirements, analysis, design. €

oding, and testing. OOD Process consists of:
« Designing classes, their attributes, methods, associations, structures and proto-
cols, apply design axioms
» Design the Access Layer
« Design and prototype User interface
« User Satisfaction and Usability Tests based
+ Tterate and refine the design

on the Usage/Use Cases

4.8.3 Rterative pDevelopment and Continuous Testing
You must iterate and reiterate until, eventually, you arc satisfied with the system.
least provides additional in-

Since testing often uncovers design weaknesses OF at
formation you will want to use, repeat the entire process, taking what you have
jearned and reworking your design or moving on to reprototyping and retesting.

Continue this refining cycle through the development process until you are satis-
fied with the results. During this iterative process, your prototypes will be incre-
mentally transformed into the actual application. The UA encourages the integra:
tion of testing plans from day 1 of the project. Usage scenarios can become test
scenarios; therefore, use cases will drive the usability testing. Usability testing is
the process in which the functionality of software is measured. Chapter 13 wil

cover usability testing.

Modeling Language

4.8.4 Modeling Based on the Unified
by the joint efforts of the leading

The unified modeling language was developed

object technologists Grady Booch, Ivar Jacobson, and James

tributions from many others. The UML merges the best of the notations usé
odologies: Booch’s methodologl:

the three most popular analysis and design meth
Jacobson et al’s use case, and Rumbaugh et al’s object modeling technique-

Rumbaugh with COS

CHAl :
PTER 4: OBJECT-ORIENTED METHODOLOGIES 81

UML is becomin .
g the universal 1
be used to ex anguage for modelin P
granl-“].iﬂg lmgfleasgse?;:dels Of many different kinds ade{J?]t:pnolz’eslt !‘S ln[ended {s]
UML has become the :t:;‘ctl‘;rraclll Lalig‘{agefcan be used in many di fférie?msttwa:yz P;l?_
is an evolvi . d notation for object-ori . - The
olving notation that still is under develg:pm:,::er-;f;: {]nzdelmg thSystems, It
. uses the UML to

describe and model th :
: - e analysis and desi
notations will be covered in Chapter CSI§SIgn phases of system development (UML

4.8.5 The UA Proposed Repository

In modern business
es, best practice sharing i
rocess and organizati > sharing 1s a way to .
?0 Siher parts I\%;r:rianpn.lproblems in one part of they busi(:lil;re that solutions to
i similar problems are communicated
plication of problem ' ms occur. Best practice shari -
o red I;S ot oio:;;?g. For many companies, best pracgzi:;l:im nates du-
sharing must be applied to r constant goal of quality improvement. B ng I8 Insti-
B0 (added o compo application development if quality and ' dest _pr_actlce
ware reusability to inglur:iin;l;euife benefits. Such sharing extends [E;Oif Ct1v1fty are
; . ases ea of soft-
SIngIl-}, and testing [22). p of software development such as analysis cc)ii::
¢ idea promote j s
B ious gxpedencé:?:dls fo create a repository that allows the maxi
user interfaces in an easil prev“-)uSly defined objects, patterns, fi e
ily utilized format. As ::’Y accessible manner with a complet‘?ly'avr:illn E‘;’Ofk‘; .
. Lo e saw previousl . able and eas-
this best practice S P usly, central to th :
sh e discu .
user request 1o mainﬁ,?agnls the concept of a pattern. EverYthirSl:?oontﬁevelppmg
in the repository. The ad\f:n?: the ?ro_lect as it goes to production s[Irllou]‘:l Cl;rlgl:na]
done projects in th ge of repositories is that, if 11d be kept
e past, objects in th tor » if your organization h
By on can sele ! e repositories from th i as
ct any piece fr : those projects might b
R ol a- dia . om a repository—from the definiti gnt be
i gram, all its symbols, and all their d Eﬁmno‘n‘of one data
N 8; reuse. r dependent definitions, to en
e UA’s underlying a ‘on ’ ’
based on ; g assumption is that, if we desi
previous e . . B esign and dev St
more than assemblingx Ez;;ﬁf’ Crefitmg additional applicationsel\(:f?lfl:gcl;c?uons
learned from ents from the libr A . uire no
_ past developmental mi ary. Additionally, applying |
quality of the pmental mistakes to futur, . pplying lessons
1 product and red e projects will incre
pability is avail : uce the cost and devel : ase the
I) o " elopment time. Some basi
repository, VisualA object-oriented environ asic ca-
; . ge, PowerBuilder, Vi ments, such as Microsof
fies contain all obs er, Visual C++, and Delphi osoft
: jects that have b . ’ elphi. These reposi
putting together e been previously defi posito-
a new softwar y defined and can be reused
ment surfaces. n . e system for a new applicati sed for
] 4 . ca .
e, o ew objects will be designed and storgg in ttlignr‘mllii:na new require-
Pereras repository for
- arguments
tions of th can be made about
- e softwar patterns and ff: .
how it should be u edcompongnts, describing the behavior (?fm lelworks' Specifica.
de\’elol)ers sed, are registered in the reposit the component and
e pository for future reuse by teams of
€ Iepository should b i
e
felatively easy to search the r::cf:jstsmlef to many people. Furthermore, it should b
ory for classes based on their attributes methoclse

82 PARTTWO M

ETHODOLOGY, MODELING, AN

D UNIFIED MODELING LANGUAGE

FIGURE 4-9
Two-layered arc

hiteciure: interface and data.

er charactenistics. For example, application developers could select prebuilt
their business needs

or oth
components from the central component repository that match
e application, customizing where needed.

and assemble these components into 2 singl

Tools to fully support 2 comprehensive repository are not accessible yet, but this

will change quickly and, in the near future, we will see more readily available tools

to capture all phases of software development into a repository for use and reuse.
Software pevelopment

CASE tools or client-server application de-
s rwo-layered archi-

4.8.6 The Layered Approach to

Most systems developed with today’s
velopment environments tend to lean toward what is known a

tecture: interface and data (see Figure 4-9).
In a two-layered system. user interface screens
tines that sit directly behind the screens; for example, a rou
you click on a button. With every interface you create, you must re-create the busi-
ness logic needed to run the screefn. The routines required to access the data must
{ be accomplished

exist within every screen. Any change 10 the business logic mus
iness. This approach results

in every screen that deals with that portion of the bust

in objects that are very specialized and cannot be reused easily in other projects.
A better approach to systems architecture 1§ one that isolates the functions of
the interface from the functions of the business. This approach also isolates the
business from the details of the data access (see Figure 4-10). Using the three-

are tied to the data through rou-
tine that executes when

FIGURE 4-10

Objects are completely presented of stored.

independent ot how they are 1@

Workstation

CHAP :
TER 4: OBJECT-ORIENTED METHODOLOGIES 83

Access layer 'E
| Business layer lﬂ

00A, 00D
&
Prototyping

FIGURE 4-11

Business objects represen e
t tangible el
dependent of how th ements of the applicati
ey are represented to the user orpr?ow ttll'!oeI;r 2’1: !‘():ht‘)uld be complelely in-
ysically stored.

layered approach
: , you are able to ¢ .
of your business yet lreate objects that repr .
B ush on }i,le]t :rrfe completely independent of how ti:; ear:: tangible elements
atabase). The

f . g

4.8.6.1 The Busines;
s Layer The busi
resent the busin siness layer contain '
as Order, Custlm:lfr (?.?;2 ;itata alﬂd behavior). This is wlh:r:li}::er::fec;? that rep-
o g] em, nvento 8 R O jects Such
oriented analysis and desi Iy, and Invoice exist. Most i
B oo, ign methodologies are generated toward idl:a]r(l)t(iii?;?ngl?hem-
The responsibiliti e
k es of the busi
objects of the busin siness layer are very straigh
. t .
When creating the Eflssiilzish&x; etheﬁf interact to accomplish %hefg;:;?::s.s IrrOde' e
ple of things : 1, however, it is import 1955 processes.
gs. These objects should not be responsibll)e f:: ttl:: i]":;?p n mind a cou-
owing:

* Displaying-detai i
ils. Business obj
theyare beitrg-di objects should have '
splaved no special kn
?n{hparﬁ i im:' rfaie ::C:hgyd:tl;;m. ’ff'l;ley are designed to be0 :ﬂggg:ngi;o;:
n the . .] SO O 3 .
* Datg c::ct:iafiit(\;ew) layer of the object di:[’ﬂ:;i(rinlgspiiay e
..wm_ey e ;L Si;rz:ls’l’nfss objects also should have-no special kn
data are stored and retri.ev tddO_es not matter to the business model A
know only to whom to ta]ke via SQL or file I/O. The business b'Whether the
are modeled duri _about being stored or retrieved. Th N j.ects need to
ng the object-oriented analysis AL L

1
A busi
1 siness model i
captures the static and dynamic relationships among a coll
ollec-

tion of bysj
. siness obj .
ations. F jects. Static relationships i
. . For exampl ships include object s
ple, a customer could have more th:c'm Oizsgclatmns and aggre-
ccount or an order

ould be 3
goregated fro i
m one or more line items. Dynamic relationships sh
ps show how

: usiness objects i
$ interact t
entory to determj o perform task
. termine prod oy xers s. For example, an o; : .
different business rnI(;de]]s'l C;Bavz.illablllty. An individual businessr (:,;1: interacts with
. Business models also incorporate comf-z(]:t (l:)an appear
objects that

84 pPART TWO: METHODOLOGY, MODELING, AND UNIFIED MODELING LANGUAGE

business objects are identified during the object-oriented

direct their processes. The
analysis. Use cases can provide a wonderful tool to capture business objects.

4.8.6.2 The User Interface (View) Layer The user interface layer consists of
objects with which the user interacts as well as the objects needed to manage or

control the interface. The user interface layer also is called the view layer.
This layer typically is responsible for two major aspects of the applications:

interaction. The user interface layer objects must be de-

» Responding 10
as clicking on a button OF selecting

signed to translate actions by the user, such

from a menu, into an appropriate response. That response may be to open or

close another interface or to send a message down into the business layer t0 start
some business process; remember, the business fogic does not exist here, just the
knowledge of which message to send to which business object.

« Displaying business objects. This layer must paint the best possible picture of
the business objects for the user. In one interface, this may mean entry fields and

list boxes to display an order and its items. In another, it may be 2 graph of the

total price of a customer’s orders.

are identified during the object-oriented de-
for a user interface or how a user will use
se cases can provide

The user interface layer’s objects
sign phase. However, the requirement
the system is the responsibility of object-oriented analysis. U
a very useful tool for understanding user interface requirements.

4.8.6.3 The Access Layer The access layer contains objects that know how to
communicate with the place where the data actually reside, whether it be a rela-
frame, Internet, or file. Regardless of where the data actually

tional database, main
s two major responsibilities:

reside, the access layer ha
cess layer must be able to translate any data-related re-

« Translate request. The ac

quests from the business layer into the appropriate protocol for data access. (For

example, if Customer number 55552 needs to be retrieved, the access layer must
d execute it.)

be able to create the correct SQL statement an
le to translate the data re-

« Translate results. The access layer also must be ab
trieved back into the approprate business objects and pass those objects back up

into the business layer.

Access objects aré identified during object-oriented design.

4.9 SUMMARY

In this chapter, we looked at current trends in ©
sometimes known as second-generation object-oriented methods, which have

toward combining the best aspects of today's most popular methods.

Each method has its strengths. Rum

ducing object models (sometimes know
d object-orient

have a sirong method for producing user-driven requirement an

bject-oriented methodologies:
been

baugh et al. have a strong method for P&
n as domain object models). Jacobson et

CHAPTER 4: OBJECT-ORIENTED METHODOLOGIES 85

analysis models. Booch ha
design models, s a strong method for producing detailed object-oriented
Each method has a weakn:
L ess, toc. While R ’
methods f umbaugh et
requirersne?:rtsm?g:hl;lg the problem domain, OMT modilsecanaln‘gt ?uIYIIT ———
- fairly. wid: r:;n et al. de:emphasizc object modeling and a{ﬂ:xpress e
Wi e same level as Bﬁzc ‘;lf the life cycle, they do not treat object-,oﬁen?;dglc: e
Booeh and Rumbasgh e; gho focgges almost entirely on design, not anaT;;%:
k . are object cent i - ¢ :
more on fi) ntered in their
how do thf;l;:lgla%';a‘:g’a‘l; iat;e tht;l ob{}::cts of a system, howaggﬁz};e:eﬁgdfocu;
. ollat each other. Jacob - 2
o that f son et al.
1 Tf:e z:gﬂi]dlgf tl:a ht?ecllr approach derives from use casc:I :rr:::;euss . ceptered,
. nd a pattern is the doc ! cenarios.
municat : umentation t i
R e :ﬁé:ll:;:t. aiind locate solutions to recurring problems0 I?realmp : ateionze, oo
ing applicatior? e e
design patterns. In fa‘;ltm;erg.m:esmg;e framework typically cncompass:;l rslgvilrl;i
- : work can be viewed i
system of design patterns. Writi ewed as the implementati
. . ng good patterns i)) ‘onofa
not only provide facts but also tell a storypthat cast l;lvery S
. trle(]mg to convey. ptures the experience the pattern
e UA is an attem| i
- pt to combine the be i
along with UMI : ine the best practices, proc s
B notations and diagrams for better unde[:‘sta:;;;; c?ll:jicgtucl)?-if“::;
-orien

Foncepts and object-oriented
e system development. The UA consists of the follow-

. Us;—case driven development

. Ob_!ect-oriented analysis

» gbject—oriented design

* Incremental development i

* Continuous tesl:ingp and prototyping

Futhermore, it utili
utilizes the methods and technologies such as, unified modeling

language, layered a
development. pproach and promotes repository for all phases of software

KEY TERMS

Abstract use case (p. 69)
Framework (p. 77
ll:attem (p- 72)
attern mining (p. 76)
IP;el:ottem thumbnail (p. 76)
to-patiem (p. 73)

REVIEW QUESTIONS

;. \\:;hhat is a method?
» What is a methodology? |
3 What is process? e

90 PART TWO: METHODOLOGY, MODELING, AND UNIFIED MODELING LANGUAGE

a model as a simplified representation of reality. A

model is simplified because reality is to0 complex or large and much of the com-
plexity actually is irrelevant to the problem we are trying to describe or solve. A
model provides a means for conceptualization and communication of ideas in a
precise and unambiguous form. The characteristics of simplification and represen-
tation are difficult to achieve in the real world, since they frequently contradict
each other. Thus, modeling enables us to cope with the complexity of a system.

Most modeling techniques used for analysis and design involve graphic lan-
guages. These graphic languages are sets of symbols. The symbols are used ac-
cording to certain rules of the methodology for communicating the complex rela-

tionships of information more clearly than descriptive text. The main goal of most
CASE tools is 10 aid us in using these graphic languages. along with their associ-

ated methodologies.
Modeling frequently

cle, such as analysis, design,

around several different models:

s Use-case model. The use-case model defines

case) of the system's behavior.

« Domain object model. Objects of the “real

object model.

« Analysis object model. The analysis object model presents how the source code
(i.e., the implementation) should be carried out and written.

« Implementation model. The implementation mode! represents the implementa-

tion of the system.
del constitutes the test plans, specifications,

o Test model. The test mo

Modeling, like any other object-oﬁented development, is an jterative process.
As the model progresses from analysis t0 implementation, MOre detail is added,
but it remains essentially the same.
In this chapter, We look at unified modeling language (UML) notations and di-
agrams. The main idea here 18 10 gain exposure (0 the UML syntax, semantics, and
modeling constructs. Many new CONCEpts will be introduced here from a model-
ing standpoint. We apply these concepts in system analysis and design contexts i

later chapters.

Efraim Turban [9) describes

is used during many of the phases of the software life cy-
and implementation. For example, Objectory is built

the outside (actors) and inside (use

" world are mapped into the domain

and reports.

5.2 STATIC AND DYNAMIC MODELS
Models can represent static or dynamic situations. Each represe
ent implications for how the knowledge about the model might be organi

reprcsented [71.

5.2.1 Static Model

A static model can be vi
a specific point in time. Static mo

ewed as a snapshot of a system's paramelers at rest 0%

dels are needed to represent the structurd

ntation has differ-
zed an

C -
HAPTER 5: UNIFIED MODELING LANGUAGE 91

static aspect of a system. Fi
. For example, a
count or an order coul » a customer could have
assume stability and a?l geb aggregated from one or more line iterlr-:;restha.n el
ing language class di sence of change in data over ti Static models
$ diagram is an example of a static mod nlle- The unified model-
el.

5.2.2 Dynamic Model

A dynamic model, i
, I contrast to a stati
procedures or behaviors ic model, can be viewed :
time. Dynamic relations:::;ts’ ;‘l']]:)en :]Ogcthtﬁr, reflect the behaviOra(S) faac:y];(::tlon of
tasks. For example show how the business objects i m over
bilit ple, an order interacts with invent - RSy perform
abi ;L y- ory to determine product avail
system can be described b i
. first d T
structure of its obje Oy e eveloping its static o
oy ;n c:(:;lld thﬂ:] relationships to each other frcr»rzlgse.l, :V hich is the
. By ine changes to th . in time, a base-
time. Dynamic modeling i ges to the objects and thej B
eling is most useful during the designegnfjd-atm;lsmps .
implementation

phases of the system develo
pment. The UML i i i
models are examples of UML dynamic mogg{; interaction diagrams and activity

5.3 WHY MODELING?

Building a mode! fi
- or a software . .
having a bluepri . system prior to its S
. . L constructio .
COmmunicatiog amon; l;lrl(;;g::r:gt a large building. Good model: fr: Seesse“'n?l as
does the im eams. As the complexi ssential for
portance o . plexity of syst d
f good modeling techniques. Many otﬁeregi tg'lcnaa:;‘es, S0
rs add to a

b g ngo

» Model elements——
nts——fundame i
R nta} modelin :
otation—visual rendering of model elfntl:::tzepts and semantics.

* Guidelines— i
elines—expression of usage within the trade

In the face of i
of increasingl
come essential, si gly complex systems, visualizati
, since w . visualization an .
se of visual notation toe cannot comprehend any such system in —
efits relating to clari fl'ep_n?se'nt or model a problem can provid its entirety. The
ty, familiarity, maintenance, and simpl?ﬁc::- e us several ben-
g ion.

"y‘
C‘! ‘a[. o

- cal or visyal
representation th I
very easily can an from listings of
. understan - code or tabl
1ion of the whoie i e .d the system being modeled © O.f numbers. We
ole is possible. ed because visual examina-

Familigri
Iy. The re :
10 the way epresentation form for th
¥y 1n whic . . e model may t ..
h the information actualy is repregen‘:gi (;lllltdto bz sl:)lmllar
used by the

» N 1l MOT:

omfortable
; 2 X
. 0 work with this type of representation

'"EnaHCe V.

e - Visual notati -

ual identificati ation can improve the maintai

cation \ e maintainabili

' of locations to be changed and the Vislt]ilogoa fS_l)"stem. The
nfirmation of

92 PART TWO: METHODOLOGY, MODELING, AND UNIFIED MODELING LANGUAGE

those changes will reduce errors. Thus, you can make changes faster, and fewer

errors are likely to be introduced in the process of making those changes.
» Simplification. Use of a higher level representation generally results in the use
of fewer but more general constructs, contributing to simplicity and conceptual

understanding.

Turban cites the following advantages of modeling [91:

1. Models make it easier 1o €Xpress complex ideas. For example, an architect

builds a model 0 communicate ideas more easily to clients.
2. The main reason for modeling is the reduction of complexity. Models reduce
ating those aspects that are unimportant from those that are

complexity by separ
important. Therefore, it makes complex situations easier to understand.

3, Models enhance and reinforce learning and training.

4. The cost of the modeling analysis is much lower than the cost of similar ex-
perimentation conducted with a real system.

5, Manipulation of the mode! (changing variables) is much easier than manipu-

lating a real system.
To summanze, here aré a few key ideas regarding modeling:

« A model is rarely correct on the first try.

» Always seek the advice and criticism of
reconciling different perspectives.

« Avoid excess model revisions, as they can distort the essence of your model. Let

simplicity and elegance guide you through the process.

others. You can improve 2 model by

5.4 {NTRODUCTION TO THE UNIFIED MODELING LANGUAGE

The unified modeling language is a language for specifying, constructing, visual:
izing, and documenting the software system and its components. The UML isa
graphical language with sets of rules and semantics. The rules and semantics of 2

ed in English, in a form known as object constraint language

model are express
(OCL). OCL is 2 specification language that uses simple logic for specifying the

properties of a system. The UML is not intended to be a visual progranuning lan-

guage in the sense of having all the necessary visual and semantic support to e =

place programming languages. However, the UML. does have 2 tight mapping toa
best of both worlds.

family of object-oriented languages, so that you can get the

The goals of the unification efforts were t0 keep it simple; to cast away ele:

ments of existing Booch, OMT, and OOSE methods that did not work in practicﬁl

to add elements from other methods that were more effective; and to invent new

methods only when an existing solution was unavailable. Because the UML &+

thors, in effect, were designing a language (albeit 2 graphical one),
xt and boxes) &

strike a proper balance between minimalism (everything is te

overengineering (having a symbol or figure for every conceivable modeling ele
gs: They did

ment). To that end, they were very careful about adding new thin

want to make the UML unnecessarily complex. A similar situation exists Wt

they had 10

th the

CH :
APTER 5: UNIFIED MODELING LANGUAGE 93

problem of UML not supporting other di
agrams, such as the g other diagrams. Booch et al. explai i
B ﬁtiasta;]t:;\:i' d‘lagram (DED), were not includel:(.ilailr:l tlt'lll atl?;/l[ler w
B vty diagrans Y into a consistent object-oriented paradi . o
L i A accomplish much of what people want fro: e
L hoasss arf ;:1;:“ alsp are useful for modeling work flowm'l‘lll)FDS -
I oar A oting the UML diagrams over all othei"s f ; aUtbOl’S
B oot foutd] condemn all other diagrams. Along the e
o s ! at were advantageous to add be T

s 0. er modeling practice. e they had proven

l ; primary goals in the design of the UML were as follows [2, p. 3]

. Provide users a ready-to- i i e

B oxctancs z] ct:m l:lSlZf :lxglrgzs:l:e visual modeling language so they can de-

. Provide extensibilit i
- y and specializati :
®E< independent of part ion mechanisms to extend th
¥ cii o formal b pfinlcular programming languages and d ;3 core concepis.
Encourage th asis for understanding the modeli cvelopment processes.
. Supporil i‘? h‘3 growth of the OO tools market g language.
. igher-level develo, ’
2 pment conc
. Integrate best practices and methodolo;l;[ss.

=1 Oh LA e D

This section of the cha i
pter is based on the Th]
e Unified Modelin
g Language,

Notation Guide Version 1 i
g
Rumbaugh [2]. written by Grady Booch, Ivar Jacobson, and James

5.5 UML DIAGRAMS

Every complex s i
: ystem is best a
e comee n i b pproached through a smal i
o of :e:rs]o:fe}i, (;::'fmng; view is sufficient. Everyar:l;gfal();:;agly e
. ot ¢ expressed
Qs ol ¢ AL est models are connected to reality. Thg I;IZIL
;. Class diagram (static)
3. Use-case diagram
. ?ehavior diagram (dynamic):
1. Interaction diagram:
g}l Sequence diagram
e .2. Collaboration diagram
3. - Statechart diagram
3. Activity diagram

4. Impiementation diagram:

:; gomponent diagram
-« Deployment diagram

The chojc
e of what .
W a problem i models and diagrams one
; is en creates has i
Il study applicationcs:oufm?red and how a corresponding solit‘gma.t influence on
of different diagrams throughout the bool?)lll-lls shaped. We
. However, in this

pter we ¢
Ooncen
trate on the UML notations and its semantics

94 PART TWO:

METHODOLOGY, MODELING, AND UNIFIED MODELING LANGUAGE

5.6 UML CLASS DIAGRAM

The UML class diagram, also referred to as object modeling, is the main static
analysis diagram. These diagrams show the static structure of the model. A class
diagram is 2 collection of static modeling elements, such as classes and their rela-
tionships, connected as 2 graph to each other and to their contents; for example,
the things that exist (such as classes), their internal structures, and their relation-
ships to other classes. Class diagrams do not show temporal information, which is
required in dynamic modeling.

Object modeling is the process by which the logical objects in the real world
(problem space) are represented (mapped) by the actual objects in the program
(logical or a mini world). This visual representation of the objects, their relation-
ships, and their structures is for ease of understanding. To effectively develop a
model of the real world and to determine the objects required in the system, you
first must ask what objects are needed to model the system. Answering the fol-

lowing questions will help you to stay focused on the problem at hand and deter-
(mine what is inside the problem domain and what is outside it:

« What are the goals of the system?
« What must the system accomplish?

You need to know what objects will form the system because, in the object-
oriented viewpoint, objects are the primary abstraction. The main task of object
modeling is 10 graphically show what each object will do in the problem domain,
describe the structure (such as class hierarchy of part—whole) and the relationships
among objects (such as associations) by visual notation, and determine what be-
haviors fall within and outside the problem domain.

5.6.1 Class Notation: Static Structure

A class is drawn as 2 rectangle with three components separated by horizontal
lines. The top name compartment holds the class name, other general propeties of
the class, such as attributes, are in the middle compartment, and the bottom com:

partment holds a list of operations (see Figure 5-1).
Either or both the attribute and operation compartments may be suppressed. A

separator line is not drawn for a missing compartment if a compartment is sup-

pressed; no inference can be drawn about the presence or absence of elements i0
it. The class name and other properties should be displayed in up to three sections-
A stylistic convention of UML is to use an italic font for abstract classes andd

normal (roman) font for concrete classes.

5.6.2 Object Diagram

A static object diagram is an instance of a class diagram. 1t shows a snapshet .
the detailed state of the system at a point in time. Notation is the same or an @
ject diagram and 2 class diagram. Class diagrams can contain objects, 502 ¢
diagram with objects and no classes is an object diagram.

CHA :
PTER §: UNIFIED MODELING LANGUAGE 95

Boeing 737 Boeing 737
length: meter
) fuel capacity: Gal

Boeing 737 doors: int
length: meter
fuel capacity: Gal
doors: int lift ()

break ()

FIGURE 5-1

In class notation, either o
\ r i
both the attributes and operation compartment
s may be suppressed

5,6.3 Class Interface Notation

Class interface notation i
ation 1s used to descri
class; for example, an : o describe the externally visi
St | , an o . . visib i
is a design activity of olsza:tl‘?r?e:["g public visibility. Ider):tifyinglccll;zl;a'vio:-fc’f :
an interface is a small ci riented system developm interfaces
circle with th pment. The UML notati
A class that requi e name of the i ation for
quires the operations i ! nterface connected t
by a dashed arro perations in the interfa 0 the class.
w. The) ce may be atta .
operations. For example d:p;“dent clz}ss is not required to actuz::]l;ed f0 the circle
, a Person object may need to interact .éut;e all of the
Wt e BankAc-

: . . . a -

s. L i |
6.4 Binary Association Notation

A binary association i
sociation is draw .
may be connect n as a solid path co .
ed to th nnecting two cl
e same class. An association may have ana Zsses, or both ends
sociation name

Funhen'no
. re, the associati
point of the triangle indi on name may have an optio
) i . nal i S
gle indicating the direction in whli)ch to r:;?icl:hmanglc in it, the
e name. The end

of an associati
ation, where i
Figure 5-3). re it connects to a class, is called the associati
iation role (see

%:6.5 Association Role

A simy _—
\ Simple associati
on-—th i i
e technical term for it is binary association—is d
is drawn as

solid line
connectin
15 10 a class, showi tt:o CIaSS.SymbOIS- The end of an associati
e association role. The role is part of th:’n, where it con-
association, not
T

O —
BankAccount

96 PART TW

O: METHODOLOGY, MODELING, AND

o worksFor

UNIFIED MODELING LANGUAGE

Company

employer

Person

employee

Person

FIGURE 5-3
Association notation.

part of the class. Each associatio
In Figure 5-3, the association W
ployer. A Person is an employee of 2

a Person.

The UML uses the term associ
affiliated with each end of an ass
to the end of the path to indicate
the class pointed tO. An arrow may

path. In particular, arrows could be shown W
association is 1€

given direction. In the UML,

resented in Figure 5_4. Navigability
owhead sy

s navigable
¢. This might indi

which is denoted by an unfilled arr

in Figure 5-4, the association i
BankAccount 10 Person, but not the revers
but it also might indicate an analysis decision,
cannot be extended to know about the BankAcc

o marriedTo

class can know apout the Person class.

5.6.6 Qualifier

A qualifier is an association

ciated to a Bank object. An

count# is the qualifier of this assocC

FIGURE 5-4
Association notation.

attribute. For example,
attribute of this assocl
jation (see Figure 5-5).

n has two or moie rol
orksFor connects
Company and

ation navigation or na
ociation relationship. An arrow may be attached
rted in the direction of
or both ends of the
ported in 2

that navigation is Suppo
be attached to neither, one,
henever navigation is sup
presented by

tw
a Company 1

vigability t0

that the Person ¢
ount class, but

a person 0
tion is the account.

BankAccount

es to which it 1s connected.
o roles, employee and em-
s an employer of

— Person i

specify a role

an open arrow, as rep
is visually distinguished from inheritance,
mbol near the superclass.
in only one direction,
cate a design decisiom
lass is frozen and
the BankAccoullt

from the

bject may be ass®-
The &

CHAPTER §: UNIFIED MODELING LANGUAGE 97

Bank

account#

0.1

Person

FIQURE 5-5
e i -
e figure depicts association qualifier and its multiplicity.

A qualifier is shown as
a small rectang]
path, between the final gle attached to the end of e
ifi . ation path. J
er rectangle usually is smaller than the at hep; cial;:t part oglthc(a class. The qual-
rectangle (see Figure 5-5).

5.6.7 Multiplicity

Multiplicity specifies th

within associations pm:sr:an'fhe‘ o allowm?le associated classes. It is gi

multiplicity specification ithin compositions, repetitions, and thgwen e

e ieger ins n 1:1 shown as a text string compri,sin ao e A

this format ; ervals, where an interval re s penoq-sepmted
(see Figure 5-5): presents a range of integers in

lower bound .. upper bound.

The terms lower b
; ound and u .
of integers includi pper bound are integer e
be used for tlfeu:;;imb?o‘;ezbolmd to the upper b(imdva'}'ltll:s;t:\rpc;fymg the range
e s soec: und, denoting an unlimited u ‘ aracter (*) may
pecified, then the integer range contains tthe_r bound. If a single integer
0.1 e single values. For example

DR
1.3,7.10, 15, 19..*

5.6.8 OR Association

AnQ ati
b tlii; ::socumon indicates
soc may be instanti
e tiated at one time fi i
l_ ey ! : e for any single obje is i
das nnecting two or more associations allgof wlilic(;:‘mT: 1: llls oo
. st have a class

fommon, with th

£ e co M -

In other words, an nstraint string {or} labeling the dashed line (see Figure 5
re 5—

s y instance of th .
tions at one tim, e class may participate in, at most, one of the

a situation i i
n in which only one of several potential as-

9 Association Class

associatip
n class i
class ig 1s an associati
shown as on that also has cl ;
ac ass pro .
lass symbol attached by a dasheg Iirf::rttcl)e; An associa-
n association

98 PART TWO: METHODOLOGY, MODELING, AND UNIFIED MODELING LANGUAGE

Person

]
Car ll {or}
|

Company

FIGURE 5-8

An OR association notation. A car may associate with a person or a company.

The name in the class symbol and the name string attached to the associa-

tion path are the same (see Figure 5-7). The name can be shown on the path or
the class symbol of both. If an association class has attributes but no operations of

other associations, then the name may be displayed on the association path and

omitted from the association class t0 emphasize its «agsociation nature.” If it has

operations and attributes, then the name may be omitted from the path and placed
in the class rectangle to emphasize its “class nature.”

path.

5.6.10 N-Ary Association

An n-ary association is an association
association 18 more difficult to understand, it is better t0 convert an n-ary associa-

tion to binary association. However, here, for the sake of completeness, WE cover
the notation of n-ary association. An n-ary association is shown as a large diamond

with a path from the diamend to eac
tion (if any) is 8.
path as with a binary association.

fiers and aggregation are not permitted. An association class symbol may

Multiplicity may be indicated; however, quali-

FIGURE 5-7
Association class.

Person

Compan:
pany employee

employet

among more than two classes. Since n-ary

h participant class. The name of the associa-
hown near the diamond. The role attachment may appear Oi each

be a- |

CHAl :
PTER 5: UNIFIED MODELING LANGUAGE 99

Year

semester [*

Class 2 .

clas

s Y student Student
|
|
!

GradeBook

grade
exam
lab

FIGURE 5-8

An n-ary {ternary} associati
l¢] i
rn that shows association among class, year, and stud
' + student classes.

The association class Grad wh

eBook whi i

S ich contains the attributes of the associations such
uch as

attributes, operation, o d
’ , or associations. The e i
IR IS1%550 o a class in each semester xample depicted in Figure 5-8 shows

5.6.1 i
1 Aggregation and Compeosition (a-part-of)

Aggregation is a form of associati
T ociation. A hollow diam i
bothpends o;l';d]l;iliée ;:lgdgli':aganon. However, the diam(()::i lrSn:;:ali:f (:J L taeted o
ey al;o know::le:d tIl:Ot be presented at all (see Figure Sf;;naChEd “
) s the g-part-of, is a form of aggregation "th
e omponent of a complex object. Com e
e o o (;_ relationship. The UML notation for s alS? P
a path. Alternatively, the UML provic(i::sm z? (;Sr)m(})ll'l ally
aphically

nested form that, i

. , 11 Many ¢ o

Figure 5-10) y cases, is more convenie

; -10). nt for showin .o
£ composition (see

ate

v Cl‘eat i i

rem
moved before the death of the aggregate

4 6.12 Generalization

seneralization is th .
3 e relationship b
5. Genera]izati . Ip between a more
o ; eneral ,
n is displayed as a directed linegwith a C‘i::fda?,i ﬁ more specific
’ ow arrowhead

l consistOf P
C
] Player

MODELING, AND UNIFIED MODELING LANGUAGE
CHAPTER 5:
ER 6: UNIFIED MODELING LANGUAGE 101

400 PART TWO: METHODOLOGY,

4 Giraphical composition Vehicle
‘Whee! Light r Door J
Car Car
et 4| |
‘ Light 410 410 T ighe Nested compasition — Truck Car D
L— Engine 1 l 1 Engine l
BoeingAirplane

FIGURE 5-10

Different ways to show com
(incomplete subclasses} ‘T

position.

criminator label 10
the class Boeing:

at the superclass end (see Figure 5-11). The ML allows a dis
be attached to a generalization of the superclass. For example,
Airplane has instances of the classes Boeing 737, Boeing 747, Boeing 757, and
Boeing 767, which are subclasses of the class BoeingAirplane. Ellipses (...) indk
cate that the generalization is incomplete and more subclasses exist that are I
shown (see Figure 5.12). The constructor complete indicates that the generalizd-

tion is complete and no more subclasses are needed.
laced on the hollow triangle shared by several gener jzali

If a text label is P
paths to subclasses, the label applies tO all of the paths. In other words, all sU

classes share the given properties.

Boei
ing 737 Boeing 757 Boeing 767

FIGURE 5-12
i {...) indi it
) indicate that additional classes exist and are not sh
shown,

7 USE-CASE DIAGRAM

€ use-case conce .
: pt was introduced
¢ engineering (OOSE ced by Ivar Jacobson i)
meth - in the object-ori
number of diffcrem)use ! od [5]. The functionality of a s JstCt oriented soft-
15 in the system. ases, each of which represents 3; em 1; described
bse case corres specific flow of
ponds to a
oked from outside the Sy:tzq“ence of transactions, in which each i
ith one another and with m (actors) and engages int ch transaction
description of a us‘:l the system’s surroundings emnal objects to inter-
performed. In essen::steh:eﬁnes what happens in the system wh
{Use case) of the syste,m 5 I:')-‘:C-C?}SC model defines the outsid Vien the use
n the system. The use c 5 ha\{lor_ Use cases represent e‘(actors) and
at these actors set off %263 are m_ltiated by actors and desscpf-:;;ﬁc flows of
at:i, a human user. e’“;ﬁmglaﬁto;ls anything that interacts ‘Sith ;he flow of
gory of user . ardware, or use case:
rather o another syste :
li?le. For ex B ¥in ttl:ln a physical user. Several ;hy_g:,:a‘?n actor repre-
. brary, which Cm:l = rms of a Member actor, many peo luscrs can play
case diagram is » l’ipresented by one actor callec[i) Mp ¢ can be merm-
a
% Comllnicati::; (p a;[)f actors, a set of use cases enz;gbeg
and generalizatj participation) associations bet sed by a sys-
on among the use cases ween the actors and

FIGURE 5-11

Generalization notation.
| Vehicle Separate target style

/ | S
L e | e

Shared target style

BoeingAirplane

Boeing 737 ‘ Boeing 757 ‘ Boeing 767 l

402 PART TWO: M

ETHODOLOGY, MODELING, AND U

NIFIED MODELING LANGUAGE

<

Client Take the call

Help Desk

Make a call

Operator

=X

Support

FIGURE 5-13
A use-case diag

relationship among
that is taken by an operator,
can be answered immediate

A use case 1S shown as

name of the use case can be pla
use case names should follow th

model.

An actor is shown as @ class re
and a stick figure, of just the stick

ure (see Figure 5-14).

FIGURE 5-14
The three representations of an

<< actor 37

Customer

ram shows the relationship amon

ly; other calls req
an ellipse containin.

ced below o insi

actor are equivalent.

ctangle with the 1
figure with the 1

g aclors and use cases within

Figure 5-13 diagrams use Cases for a Help Desk. A use-

uire research and a retu
ame of the use case. The
lipse. Actors’ names
ation guidelines of

g the
de the el
¢ capitalization and punctu

abel <<acto
ame of the actor below

<< actor >
Customer

X

Custome?

representative

a system.

>, or the 14
the

c .
HAPTER 5: UNIFIED MODELING LANGUAGE 103

Thes: i i
e relationships are shown in a use-case diagram:

1. Communication. Th
. The communication relati i
shown by connecti n relationship of an actor i .
The actor is said ng the actor symbol to the use-case symbol oo tse case S
2. Uses. Au : to “communicate” with the use case ymbol with a solid path.
3 . A uses relationship bet :
ween i
from the use case. use cases is shown by a generalization arrow
3, Extends. The ext i
'» . en (3 .
i nother u(:: Zzlsatll;)nshlp is us.ed when you have one use ¢ i
e but does a bit more. In essence, it is like . tt;:ft .
, a subclass.

5.8 UML DYNAMIC MODELING {BEHAVIOR DIAGRAMS)

It is impossible to capture all i
' details .
B e Gingrich explain: of a complex system in just one model or

One must understand both
the structure .

must understand th : and the function of the obj i
R oo the ind?vﬁﬁi?ﬁc structure of class objects, the in?]g‘:.?g; involved. One
Bk 2 » whole, The problem izvmrs ofhobjects, and the dynamic txalmvc;:;rant"i tll:1 o
B & footbal somewhat analogous to that of viewi o e

1 game. Many diffi viewing a sports event
P eestarding of th E Many different camera an les . X
s ciuld e action taking place. Each camera I’ive lar € req'““'cd to provide

not be conveyed by one camera alone [6]2l * paricular aspects of

The diagrams we h
pen dynamically in alélwgl(t):rl;efi at so far largely are static. However, ev
e another s: Objects are created and destroyed » events hap-
er in an orderly fashion, and in some zyst,eobjects send
ms, external

events trigger operatio .
ns on certain obj
state of an obj . jects. Furtherm .
object would be difficult to capture in a st::i% zlbjdeC;S have states. The
odel.

the actors and use €ases within a system. A client makes 2 call -
who determines the nature of the problem, Some calls e state of an object i . .
3 all ple: “When a te]eJ honls the result of its behavior. Booch provides
rn call. phone is first installed, it is in idle state meanin;1 S;hmi excellent exam-
? at no previous be-

havior is of i
great interest and that th i
someone picks up th at the phone is ready to initi .
X itiate an

state; in this statg we gzn:;f‘. we satgl(1 that the phone is now off—h:orca:ng? C:;:IS' _Vhen

conversation with expect the phone to ring: in the dialing

con A . g: we expect to

it rings and then Wer;)ic l)(' ::r 1:hames on another telephone. wngﬁcm e E:Oabl,-, to initiate a

expect to be able to converze E_handset, the phone is now in the rec[;ivirr:e 's on-hoot If
with the party that initiated the convcrsatior% [5:1]‘ te and we

bject-orient
y ed development
with the following diagra[;lgou can express the dynamic semantics of a prob-

ehavior dia.
grams (d a5
Interaction diagra(mz.n AlgHC):
i diagrams
ollaboration dia.
Blechart diagrams
tvity diagrams

204 PART FOUR: OBJECT-ORIENTED DESIGN v

+ Corollary 2. Single purpose. Each class must have a single, clearly defined pur-
pose. When you document, you should be able to easily describe the purpose of
a class in a few sentences.

Corollary 3. Large number of simple classes. Keeping the classes simple allows
reusability.

Corollary 4. Strong mapping. There must be a strong association between the
physical system (analysis’s object) and logical design (design’s object).
Corollary 5. Standardization. Promote standardization by designing inter-
changeable components and reusing existing classes or components.

Corollary 6. Design with inheritance. Common behavior (methods) must be
moved to superclasses. The superclass-subclass structure must make logical

Sense.

9.4.1 Corollary 1. Uncoupled Design with Less Information

Content

The main goal here is to maximize objects cohesiveness among objects and soft-
ware components in order to improve coupling because only a minimal amount of
essential information need be passed between components.

9.4.1.1 Coupling- Coupling is a n_;g_@l_r,c_nf,ihe_strcngm.of_Wb-
lished by a connectiop from one_object or software cO onent to another. Cou-
—_— . oy . . T . . .

pling is a binary relationship: A 18 coupled with B-, Coupling is important when
evaluating.a design because it helps us focus on an 1mportant issue in design. For
example, a change to one component of a system s ould have a minimal 1mpact
on other components [3]. Strong coupling among objects complicates a system,
since the class is harder to understand or highly interrelated with other classes. The

degree of coupling is a function of

1. How complicated the connection is.
2. Whether the connection refers to the object itself or something inside it.

3. What is being sent or received.

The degree, or strength, of coupling between t\y_q,_compgggms_is_mﬂé_ufﬂ)_’
the amount and complexity of information transmitted between them. Couplingit==
credses (becomes stronger) with increasi ity or obscurity of the inter
face. Coupling decreases (becomes lower) when the connection is to the compe*
nent interface rather than to an internal component. Coupling also is lower for daté
connections than for control connections. Object-oriented design has two types ol
coupling: interaction cou ling and inheritance coupling [3]-

Interaction coupling involves the amount and complexity of messa 4
components. It is desirable to have little interaction. Coupling also applies 10 _ﬂ“
complexity of the message. The general guideline is to keep the messages as s
ple and infrequent as possible. In general, if a message connection involves MO8
than three parameters (e.g., in Method (X, Y, Z), the X, Y, and Z are pa{meleﬁ).
examine it to see if it can be simplified. It has been documented that objects
nected to many very complex messages are tightly coupled, meaning a0y L
to one invariability leads to a ripple effect of changes in others (see Figure -2

2

FIGURE 9-3
E is a tightly coupled object.

r

i - i v .
*

the number of messages sent i
: and received i
R o interaction couplings ived by an object [3). Table 9-1 contains dif-

Inheritance is a form of coupling between
of coupling bet super--and-subclasses. A subcla
coupled to its superclass in te ; ' :
its superclass in terms of attributes and methods I?n?i‘ke 'snte al cs§olns
p p . interacti

coupling, high inheri ing i i
g, high inheritance coupling is desirable. However, to achieve high inheritan
—_— ——— e ce

TABLE 9-1

TYPES OF COUPLING

Wighest 10 loweat] AMONG OBJECTS OR COMPONENTS (shown from

Name Description

Content coupli i
R upling The connection involves direct reference to atiributes

or methods of ancther object.

“global data space,” for both to read and write

The conngcﬁon ipvolves explicit control of the
processing logic of one object by another.

Controi coupling

Stamp coupli
p coupling The connection involves passing an aggregate data

structure to another obj i
: ject, which uses ont
portion of the components of the data strugn?re.

The connection in i
volves either simple data i
ata items
aggregate structures all of whose elements areor

used by the receiving obj :
ject. This
goal of an architectural design. LR LD

Data coupling

206 PART FOUR: OBJECT-ORIENTED DESIGN

coupling in a system, each specialization class should not inherit lots of unrelated
and unneeded methods and attributes. For example, if the subclass is overwriting
t using them, this is an indication inheritance coupling

most of the methods or no
is low and the designer should look for an alternative generalization-

specialization structure (see Corollary 6).

9.4.1.2 Cohesion Coupling deals with i_p'te_;a_cﬁgns..betweggp_bjgs_:_ti or software
components. We also need to consider interactions, within a sin le object or soft-
ware component, called cohesion. Cohesion reflects the “single-purposeness” of

an object. Highly cohesive components can lower coupling because only a mini-
mum of essential information need be passed between components. Cohesion also
helps in designing classes that have very specific goals and clearly defined pur-

poses (see Corollaries 2 and 3).
Method cohesion, like function cohesion, means that a method should carry

only one function. A method that carries multiple functions is undesirable. Class
cohesion means that all the class’s methods and attributes must be highly cohe-
sive, meaning to be used by intemal methods or derived classes’ methods. Inheri-
tance cohesion is concerned with-the following questions [31:

. How interrelated are the classes?
+ Does specialization really portray specialization of is it just something arbitrary?

See Corollary 6, which also addresses these questions.

9.4.2 Corollary 2. Single Purpose

Each class must have a purpose, as was explained in Chapter 7. Every class should
be clearly defined and necessary in the context of achieving the system’s_goals.
le to easily e;pl@iwau:msgjn a

When you document a class, you should be ab
If you cannot, then rethink the class and try to subdivide it into
keep it simple; to be more precise, each

sentence Or {WO.
more independent pieces. In summary,

method must provide only one service. Each method should be of moderate sie,
no more than a page; half a page is better.

Large Number of Simpler Classes, Reusability

large number of simpler classes. You cannol
s in which the classes you create will ¢
the more likel blems can
¢s, adding a minimal number of sub*
and reused (or inhented) contributés

class is just so much dead

9.4.3 Corollary 3.
A great benefit results from having a
possibly foresee all the future scenario
reused. The less specialized the classes are,
be solved by a rccombinaﬁon.of.existing class
classes. A class that easily can be understood
to the overall system, while a complex, poorly designed !
weight and usually cannot be reused. Keep the following guideline in mind:

the better are your chances of reusing them in other P“‘J'_'

The smaller are your classes,
too specialized to be reused.

ects. Large and complex classes are
Object-oriented design offers a path for producing libraries
The emphasis object-oriented design places on encapsulation,

!
12

modularizatiﬂﬂ- and

Cl A ER 9: E ol S

polymorphism suggests reuse
B e 10 Horat o oc rather than building anew. Cox’s descripi
brilding hardw af:;y f::)nnlzlfs tzn sc;nnlanty between object-orient:dsdiiifl:nptmn o
alized with the introductio:l of gr d. set of chips [S). The software IC Iict;p“mn't and
Coad and Yourdon argue that esign patierns, discussed later in this chmy 2
But the organizations that 'l? Soft.wa{e reusability rarely is practiced ff;pte-r.
achieved high levels of re:;’; bis;;lt;vwe in ﬂrl;e 21st century will be thos: ﬂf;:l;,:l\?g
Griss [6] argues th —anywhere from 70-80
ntilizing Objict teche:nt:’)l?yléhogh reuse is widely desired and p:ftimmf tinore Bl
narrow a focus on technolf; any object-oriented reuse efforts fail bec .
He recommended an institufi)c() a:ld not on the policies set forth by an Ol’a'ﬁ: s
software assets intentionall d L e R deveIOpmen% in which
consistently are used and y are created or acquired to be reusable The o
B o= e organization’s :;?llintamed to obtain high levels of reuse . thereesl: iy
and effectively 6], ty to produce high-quality software pr,oducts éll;[c)itl;

Coad and Yourdon [3 i
TR [3] describe four reasons why people are not utilizing thi
is

1, Software engineeri
cering textbooks t
“first principles”; (thooks teach new practitione -
' principles”; reusability is not promoted or even crislstcc:.l bméd R
. The “not inven ssec.
ted here” synd
; : rome and the i
interesting software 1 e intellectual challen i
someone else’ problem in one’s own unique way miti ge of solving an
3. Unsu efsf s software component y mitigates against reusing
- ccessful experiences wi ,
, with software ility i
many practitioners reusability in the pa i
| o organizationSan:-:losi;relopment managers that the congelsatt 'ilsa:e convinced
provide no reward for reusability; sometimes o [(eractlcal.
’ productivity

is measured in terms d

of new lin ;

50 _ es of code writt i

percent less credit) for reused lines of COdecn Plus a discounted credit (e.g.,

The ne;
€ primary benefit of software reusability

four times
as producti
other form Ofl:'cUSabilrte as thf? team tha_lt achieves only 20 percent rensabili
next section. Yy 15 using a design pattern, which will be eXPlZ? llclj[y. Atl:-
ned 1in the

is higher productivity. Roughly

9'4-
#4.4 Coroliary 4. Strong Mapping

Obj i
JECk- i mode
sis and object-orj i
Ar ; - l__t.ﬂ;lﬁmec.i-desxgn.are based on the same
the model progresses from analysis_to_implementation, more detail addedl‘
: is

ALt remaing ;
iry a Clas & For :

; s Emplo - —For example, during anal T
SIgN its methl:)dg ciet.s [;;‘Sr:)ng the design phase, we neged toyjézi:; tl::'lghtl e
BSSES, A Strong manm; ociation with other obje . 15 class

ng mapping links classes identiﬁed..glui;;’g?:fall;ii: le“(; arl1d aocess
L and classes de-

ned d
, view and access classes). Martin and Qdell

3 “ul;l:;g the design phase (e.g.
Important issue very elegantly:

—_— uF

248 PART FOUR: OBJECT-ORIENTED DESIGN

about the world around us. As new facts are acquired, we relate them to existing
structures in our environment (model). After enough new facts are acquired about
a certain area, we Creaté new structures to accommodate the greater level of detail
in our knowledge.

The single most important activity in designing an application is coming up
with a set of classes that work together to provide the functionality you desire. A
given problem always has many solutions. However, at this stage, you must trans-
late the attributes and operations into system implementation. You need to decide
where in the class tree your new classes will go. Many object-oriented program-
ming languages and development environments, such as Smalltalk, C++, or
PowerBuilder, come with several built-in class libraries. Your goal in using these
systems should be to reuse rather than create anew. Similarly, if you design your
classes with reusability in mind, you will gain a lot in productivity and reduce the
time for developing new applications.

The first step in building an application, therefore, should be to design a set of
classes, each of which has a specific expertise and all of which can work together
in useful ways. Think of an object-oriented system as an organic system, one that
evolves as you create each new application. Applying design axioms (see Chapter
9) and carefully designed classes can have a synergistic effect, not only on the cur-
rent system but on its future evolution. If you exercise some discipline as you pro-
ceed, you will begin to see some extraordinary gains in your productivity com-

pared to a conventional approach.

10.3 UML OBJECT CONSTRA LANGUAGE

In Chapter 5, we learned that the UML is a graphical language with a set of rules
and semantics. The rules and semantics:of the UML are expressed in English, in
a form known as object constraint language. Object constraint language (OCL)
is a specification language that uses simple logic for specifying the properties of
a system,

‘M:ﬁy_—UML modeling constructs require expression; for example, there are €x-
pressions for types, Boolean values, and numbers. Expressions are stated as strings
in object constraint language. The syntax for some common navigational expres-
sions is shown here. These forms can be chained together. The leftmost element
must be an expression for an object or 2 set of objects. The expressions are meant

to work on sets of values when applicable.

/ Irem.selector. The selector is the name of an attribute in the item. The result is
the-value of the attribute; for example, John.age (the age is an attribute of the
obiéct John, and John.age represents the value of the attribute).

o frem.selector [qualifier-value]. The selector indicates a qualified association that
qualifies the item. The result is the related object selected by the qualifier; for
example, array indexing as a form of qualification; for example, John.Phone[2].

assuming John has several phones.
« Set —> select (boolean-expression). The Boolean expression is written in terms

CHAPTER 10: DESIGNING CLASSES 219

£ obi - .

(t)h e(;;::])zcl;s;n w;t(hl;:;s t:iz nsc_at.u—‘IL;hefresult is the subset of objects in the set for which
. is true; for example, company.empl — 0000

This represents employees with salaries over 530})00.[:’ yee > salary > 3 .

Other expressions will be ¢
overed as we study thei i i
However, for more details and syntax, see UMI{ Ogiagggir;?:tz Pl notations.

10.4 DESIGNING CLASSES: THE PROCESS .

In Cha bi i
concenlzrt::e9(; we looked at the object-oriented design process. In this section, we
n step 1 of the process, which consists of the followings activi’tieS'

10MmMs t d Slg ¥ 3 v 5

1.1. Refine and complete the i

; . .

S p static UML class diagram by adding details to
1.1.1. Refine attributes,

1.1.2. Design methods and the
protocols by utilizi ivity di
. gram to represent the method’s algoﬁthml.zmg # ML setivlty diz
.1.3. Refine the associations between classes (if required).

1.1.4. Refine the class hi ‘desi I 3
1.2. Tterate and refine. erarchy and 'design with inheritance (if required).

Obiect-ori . N

B X 36 r; :Sn:(r)ilt;ilr;l:tsilgn 11; an iterative process. After all, design is as much about

bl by no:n}l). <;m.)t be afraid to.change your class design as you gain

e itemi,o 2 be a raid to ch?nge it a second, third, or fourth time. At
, you can improve the design. However, the trick is to correct the.de—

sign flaws as early as possible; redesigni i
i el imp’ossib[;gnmg late in the development cycle always

10.5 CLASS VISIBILITY: DES
t IGNING WELL-
PRIVATE, AND PROTECTED PROTOCOLS PEFINED PUBLIC,

in designi i
lems.s;)g:;nii :}'::thf;f, orlattn_butes for classes, you are confronted with two prob-
e, One [s the !i’[! co ’1 or interface to the_class operations and its visibility; and
B o ol (l::p &?n;]ented. Often the two have very little to do with ’each
B munoie OC; 1)1(might h_ave a class Bag for collecting various objects that
St toe B clocs rrences of its elements. One implementation decision might
B Do o uscsl?nother.class, say, Dictionary (assuming that we have a
par Jlctionat s;; th{a\sctua y hold its 'elements. Bags and dictionaries have very lit-
e 1 Comme r;idden rrcllay fsfee‘m curious to the outside world. Implementation, by
messages’that naden and off limits to other objects. The class’s protocol, or’the
o understands, on the other hand, can be hidden from other ob-
private protocol) or made available to other objects (public protocol). Pub-

l. 3 o d f an ob e(:t' Ilvale

290 PART FOUR: OBJECT-ORIENTED DESIGN

Private (internal) protocol

,:: Protected protocol |

: e ‘-
Messages = __ /f £ i

ic profocol v
A T
) T !

e -)

Sugcl-ass

L i n obje
lih‘:li‘t’:ﬁfotocols define the funclionality and external messages of an obj

cols define the implementation of an cbject.

ct, while private proto-

rtan i tween

It is important in object-oriented design to define tthe% ﬁg;;gzgotzzfglﬁass s
X S .

i ses in the application. This 1s a set . 2 GBS

ve asrtaxsf:::lga;;celrf:at;pe must understand, aithough the interpretation and imp

ace

i individual class.
tatign (1)f ga:lgom;;;;%ilg: I; ts(:atd::f :;llggﬁis that it us;,s on!y irtggarl;zr; s:;n;::ag;st
oy i f the class, inciu _
Dt lt:.lle p:'l l;’eat:eﬁ:?rtzﬁlog’:::bo’tl;jtgt; it is accessible only todo%r:uir;r:
e Shmll n'?.'ate protocol, only the class itself can use the me_tl}o : r al;’)o J
ool nz%r:lxty) defines the stated behavior of the class as a cmze:il i 208
& p_rotocol (vlf ortant information for users as well as future descenma;nd;ss i
l_llatlon apd ¥ u?lli classes. If the methods or attributes can be used‘liny o o
« acce§51bleb'£ es, a protected protocol can beused. Ina protecte. prltg
:.;g ltc;r) 1t:;|;lclasa::s tfle can use the method in addit.'}on ltfo t:1: :é:;ss li:::; o.n .
| i i itself a ;

e W‘fa Hdemi?tﬁﬁgr:t;%:no?cﬂu:sfe;then details about a clas:l’ sd?t:;;
The_pmblem (t)atf:rf ‘ze disclosed through the interface. As more mt::nlf e
lt::lc:)rt::gf;s]fl;lle, the flexibility to mak:: chatnlglzs 111!:, ;l:;ﬂflltx;u?: c::‘t:;?szd 'for -
plementation is completely open, almos

i is i i , necessary, a0
changes. It is fine to reveal implementation when that is intentional

CHAPTER 10: DESIGNING CLASSES 221

carefully controlled. However, do not make such a decision lightly because that
could impact the flexibility and therefore the quality of the design,

For example, public or protected methods that can access private attributes can
reveal an important aspect of your implementation. If anyone uses these functions
and you change their location, the type of attribute, or the protocol of the method,
this could make the client application inoperable.

Design the interface between a superclass and its subclasses just as carefully as
the class’s interface to clients; this is the contract between the super- and sub-
classes. If this interface is not designed properly, it can lead to violating the en-
capsulation of the superclass. The protected portion of the class interface can be
accessed only by subclasses. This feature is helpful but cannot express the totality
of the relationship between a class and its subclasses. Other important factors in-
clude which functions might or might not be overridden and how they must behave.
It also is crucial to consider the relationship among methods. Some methods might
need to be overridden in groups to preserve the class’s semantics. The bottom line
is this: Design your interface to subclasses so that a subclass that uses every sup-
ported aspect of that interface does not compromise the integrity of the public in-
terface. The following paragraphs summarize the differences between these layers.

10.5.1 Private and Protected Protocol Layers: Internal

Items in these layers define the implementation of the object. Apply the design ax-
ioms and corollaries, especially Corollary 1 (uncoupled design with less informa-
tion content, see Chapter 9) to decide what should be private: what attributes (in-
stance variables)? What methods? Remember, highly cohesive objects can improve

coupling because only a minimal amount of essential information need be passed
between objects.

10.5.2 Public Protocol Layer: External

Items in this layer define the functionality of the object. Here are some things to
keep in mind when designing class protocols:

* Good design allows for polymorphism.

* Not all protocol should be public; again apply design axioms and corollaries.

The following key questions must be answered:

* What are the class interfaces and protacols?

* What public (external) protocol will be used or what external messages must the
Sysiem understand?

* What private or protected (internal) protocol will be used or what internal mes-
Sages or messages from a subclass must the system understand?

10.6 DESIGNING CLASSES: REFINING ATTRIBUTES,

Attributes identified in object-oriented analysis must be refined with an eye on im-
Pleme_ntation during this phase. In the analysis phase, the name of the attribute was
Sufficient. However, in the design phase, detailed information must be added to the

280 PART FOUR: OBJECT-ORIENTED DESIGN

i j Enhance Your
11. ONTOS, Inc “Objecthelatinnal Integration: How to Use Objects o En

i Data.” White paper, 1998. . 1
Rel:“;“':\:r and Coronel, Carlos. Database System_s-—TDe.ggn, I;rgp oy
- 1:40 ’a :me;:t 24 ed. Belmont, CA: Wadsworth Pubhshlrég ompany,
13 Rggeft’son-D{mn. Bernard. comp.client-server FAQ, 1996.

client-server FAQ, 1996. . ‘ Data Ac.
i‘; '53:;!?: Ié-l?)' %;::IHP Rick: and Finkelstein, Shel. Enterprise Java Platfo
. I' '+ i) T *

Proceedings of ACM SIGMOD International Conference on Management of
cess.” Pro
Data 27, no. 2 (June 1998).

ementation, and

View Layer: Designing
Interface Objects

Chapter Objectives

You should be able to define and understand
+ Identifying view classes.
* Designing interface objects.

12.1 INTRODUCTION b

Once (fie analysis is complete (and sometimes concurrently), we can start design-
ing the user interfaces for the objects and determining how these objects are to be
presented. The main goal of a user interface (UI) is to display and obtain needed
information in an accessible, efficient manner. The design of the software’s inter-
face, more than anything else, affects how a user interacts and therefore experi-
ences an application [5]. It is important for a design to provide users the informa-
tion they need and clearly tell them how to successfully complete a task. A
well-designed UI has visual appeal that motivates users to use your application. In
addition, it should use the limited screen space efficiently.

In this chapter, we learn how to design the view layer by mapping the Ul
objects to the view layer objects, we look at UI design rules based on the design
corollaries, and finally, we look at the guidelines for developing a graphical user
interface. A graphical-user-interface-(GUI) uses icons to represent objects, a
Pointing device to select operations, and graphic_imagery to represent relation-

ships. See Appendix B for a review of Windows and graphical user interface ba-
SIcs and treatments.

12.2 USER INTERFACE DESIGN AS A CREATIVE PROCESS

Creative thinking is not confined to a particular field or a few individuals but is
POssessed in varying degrees by people in many occupations: The artist sketches,
the journalist promotes an idea, the teacher encourages student development, the

CHAPTER 12: VIEW LAYER: DESIGNING |
282 PART FOUR: OBJECT-ORIENTED DESIGN NTERFACE OBJECTS 283

(CONTINUED)

e
—_—

—_— —

BOX 12.1

of how much additional information the object may objects from which they are composed is decompo-—|

Real-World Issues on Ag&ﬂda g&ﬂell:m‘- If dee_‘-lred.'We can “open” an fcon to see an- sition. The depth to which object decomposition
TOWARD AN OBJECT-ORIENTED USER INTERFACE perfor:':e:ct::grs' this additional information. We can should be supported in the interface depends en-
. © cuarantes sich 85 ot se?:c;?';nscgzzasgin\;agﬁu: ct:chrfnques, tlrer{y oln what a user finds useful in performing a
) - ject-oriented language does not g .) ' ion from a particular task. A user writing a repo ,
In the mid-1980s, mamstream PC'softw;:zr:z\tfee:- ';.? S'éﬂ?’eac; a matter of ?act, you need not use an ;lgrgé:r dfragglng and dropglqg. Icon_s he]p depict probably would not be interegsted ill':: dr;a:ic::ge:r?trgfgf
opers started making the move c;g"; raphical object-oriented language to create an OOU, but it b S oF an object by providing a pictorial repre- jects smaller than characters, so in this task char-
based user interfaces such as D " On?axtl:najor helps. Because the concepts involved are similar, o on. Ot\"\?xample, consider Windows 98 orits acters would be elemental abjects. However, a user
user interfaces (QUls). We now faceo Oel.ll (object- the two disciplines can be usedina oomplen)enti_ary lrJI menc:essorb mdows‘95. whe.re you can chc[c the creating or editing a character font might need to
shift in Ul design, from GUI to| t software de- relationship. The primary distinction to keep in mind og e 3”5; utton while selecting any object (icon) - manipulate individual pixeis or strokes. In this task
e Ll imtirfa;eg.ve'-':zect)rgu??aquires some is that OOU! design concentrates o? t‘:\e r?)b]r‘:\cr:\s up that g?\fe SO:C’)CV;';'SC?O‘:}':L"&?",‘S'"; rgzpu POF;p:Eg characters would be composed of pixels or strokes,
i ition, the ; ject-ori : ies an ’
?;Etlr':"_':‘l::; lzggut how to design software, not only perceived by users, and object-oriented prog operations possible on the ioon. prop 9 ;‘:Ial'lit:) él;:‘;:fore a character would not be an elemen. |

ming focuses on implementation details, which of-

from the development side but also from the human T od 1o be hidden from the user. Although we create and manipulate objects, |

. i . Mmany people never need to be conscioust f WHY OoU
computer interface side) f the Ad- An OOUI allows a user to focus on objects and . h y aware o oour?
Why objects? Tandy Trower,t cﬂ;ﬁlﬂ;fog explains work with them directly, which more clpsely reflects ;h:ecrlsaos: ;o er::hian objec:_ belongs. For example, An OOUI lessens the need for users to be aware of |
vanced' User .Interface group :n interface is a nat- the user's view of doing work. This is in contrast to e "l’hisplijs 2 sc’r:g a Lep |:ner need not stop and the programming providing the functions they em-
tha v ot;jects i 3:: ri?\st’gract with our environ- the traditional application-oriented or c'irﬁ‘nc: gr:}::- chair' Therefore, | c:'rl":it'conbite"‘o&slise e, n vy Py Incteac, 0) eereonoeetts on iy |
thet using objects 1 ! ‘ . B o aeye. Myt f i 2 fore, . wise, a user objects needed to accomplish their tagk |
: objects. ical user interfaces, . i i 3 5 The aspects

T ICE e f;n;mpu;?t;o';i;;le lcom_ el i !ask they want to per g::n\;oxi("v;r;m :‘;a(ts"a}nd come to expect that'all forming actions on those objects. The aspects of l
Objects alsq allow t he detn |?n s that can {Je ap- form and the type of information they want to use, A In the same way without caring starting and running programs are hidden to ail but
Objects o'f 3ol co;v:;‘::;ace ST A e e mechanis 'ln pr?_ e S are a subclass of the data object those users who want to be aware of them. A user

puedbc?g:!s szsntllx'oa;g?t?ess characteristics, or aftrib- vided by the program, suc; ase ?tn Open dialoa. © Ul classes also are very useful to you when de tst:' ggld nlefd :ﬁ krtlaot o :hiCh e e |
an obj Sy ' hasits locate their information and use it. igni i ink hieve. the e oW o use thos _
utes that define its appeal:agfe :; ?;?tt 2:03 file or :E:::gn aa';(igltegace,dpeatgau§e they force us to think to achieve the desired result [2]. The learjning
ute tha def B?cause oy n ha%e QLS MICROSCOPE 3 2peii thgt hearlcl is mctlor_rs among the classes process is further simplified because the user has
as small as a sn'n_gle character, c?t‘ can be gener- An object-oriented user interface alfows organizing musljbe caraf ?' o: ﬁbe provided the user. Classes to deal with only one process, viewing an object, as
viewing and edmnlg those properties objects in the computer environment similarly to e nction ti ut y defined with respect to tasks and opposed to starting an application, then finding and
alized across thei mt;eer;ac‘:‘es L?'].interface focuses on how we organize objects in the real world. We cann 2 use?uf wzezs;rz c:;rlzgtly :nderstand farllld that opening or creating a file. Although this is the main

An object-orien : ir ; in many tasks in a'common, con- 3 . SSes are carefully de- objective of OOUI

o eep objects used in Y b : N ;i » We are a few years away from

objects, the “things” people use to accomplish their ven!:ent lp lace and objects used for specific tasks in fined, these distinctions make it easy for users to completely achieving the goal. However, a cor¥1puter |

work. Users see and manipulate object representa- tearn the role of an object in performing their tasks is a tool, and as with any ot

tions of their information. Each different kind of ob- more specific places. and to predict how an object will behave.

her fool, it has to be
Ul objects typically are represented on a users

learned to be used effectively. Therefore, when you

i ts actions appropriate for the information : all graphic images In Chapter 2, we saw that most objects—except ¢ impiifyi
lifc:tezlrlgsp:nts. Typical users neep not be awa::cgf fl..c;?ir; I:sal?snesr. ilccl:::t?fya; so"t:iectg. TE"?V typically the njost basic ones—are composec'l of and maF; fnzntzel.';gea auf;;l% osl:n;;:ligxllggdri grocess of learn-
computer programs and underlying computer consist Of a picture that conveys the oqum’s class contain other objects. For example, a spreadsheet
nology (2] ts are similar, object- and a text title that identifies the specific object. | ;f: :t" I::IGCC; :tOIjnp;osed of cells, and cells are objects I
While many of the concepts ad object-oriented Icons are intended to provide a concise, easy-to- and solnC rth ?3'” Sl formulas, video, T iopeyer, currently we are in a transition phase between
orlented programmlngt (tgg sP;':: thing; Simply us- manipulate representation of an object regardiess E 3 orth. Breaking down such objects into the GUI and OOU. |
user interfaces are no . —r '_'_—"———-—-———_...___._________]
ientist develops a theory, the manager implements a new strategy, oy prC[: situzzi ringing together, in the mind, various combinations of known objects or
e software systemn or improves an existing system to cred ons, We are using inventive imagination to develop new products, systems
grammer develops a new &rdemgns. It is not necessary to visualize absolutely new objects or to go beyond’
a better one. lies newness, but often it is concerned with the improvement of ! e !)Ounds of our own experience. Inventive imagination can take place simply by
Creativity imp leshnas with the creation of a new one. For example, newly cre- ;‘!“;lng together known materials (objects) in a new way. Therefore, a developer
old products as m':cb useful. it should be of benefit to people, yet should not be a]lg t conceive new software by using inventive imagination to combine objects
e o et'on th;it others will not use it. A “how to make sm'nethmg ofretﬁqy in his or her mind to satisfy user needs and requirements. As an example
Sb(;t?m’?l;tg{u?; “tl:r(:l;:ed with good judgment, is an essential characteristic of a0 = See the Real-World Issues on Agenda “Toward an Object-Oriented User
er)

Interface_n

effective, creative process.

284 PART FOUR: OBJECT-ORIENTED DESIGN

Is creative ability born in an individual or can someone develop this ability?
Both parts of this question can be answered in the affirmative. Certainly, some peo-
le are born with more creativity than others, just as certain people are born with
better skills (athletes, artists, etc.) in some areas, than others. Just as it is possible
to develop mental and physical skilis through study and practice, it is possible to
develop and improve one’s creative ability.
To view user interface design as a creative process, it is necessary to understand
what the creative process really involves. The creative process, in part, is a com-

bination of the following:

1. A curious and imaginative mind.
2. A broad background and fundamental knowledge of existing tools and methods.

3. An enthusiastic desire to do a complete and thorough job of discovering solu-

tions once a problem has been defined.
4. Being able to deal with uncertainty and ambiguity and to defer premature closure. .

One aid to development or restoration of curiosity is to train yourself to be
observant. You must be observant of any software that you are using. You must ask
how or from what objects or components the user interface is made, how satisfied
the users are with the UI, why it was designed using particular controls, why and
how it was developed as it was, and how much it costs. These observations lead
the creative thinker to see ways in which software can be improved or to devise a

better component to take its place.

12.3 DESIGNING VIEW LAYER CLASSES

An implicit benefit of three-layer architecture and separation of the view layer
from the business and access layers is that, when you design the UI objects, you
have to think more explicitly about distinctions between objects that are useful to
users. A distinguishing characteristic of view layer objects or interface objects is
that they are the only exposed objects of an application with which users can in-
teract. After all(view layer classes or interface objects are_objects_that.represent
the set of operations in the business that users must perform to complete. their
tasks, ideally in a way they find natural, easy to remeriber, and useful. Any ob-
jects thattrave direct contact with the outside world are visible in interface objects,
whereas business or access objects are more independent of their environment. -
As explained in Chapter 4, the view layer objects are responsible for two major

aspects of the applications:

raction. The user interface must be designed [0
such as clicking on a button or selecting from a
be to open or close

usiness layer to statt
just

1. Input—responding o user inte
translatean action by the user,
menu, into an appropriate response. That-response may
another interface or to send a message down into the b
some business process. Remember, the business logic does not exist here,
the knowledge of which message to send to which business object.

2. Output—displaying or printing business objects. This layer must paint the best
picture possible OI The business objects for the user. In one interface, this may

Sufficiont &
{ fficient improvement of overall quality. We will stud

mean entry fields and list b .
oxes to displ ..

may be - play an order and
Th ¥ 5¢ & graph of the total price of a customer’s orderslts ltems. In another, jt
e process of designing vi)
- of designing view layer classes is divided into four major activig
« the macro | : . ctivities:
ity for i evel Ul design process—identifying view layer obj .
most part, takes place during the anal ver objects. This activ-

us in identifying and i i
designing them.g gathering the requirements for the vie

2. Micro level UI design activities:

21 Designing the vi,
. ew layer objects b : :
ies. In desisnine vi Cls Oy applying design axi '
) P(;ne:ts Zf)lgt:lnel;gbwew layer objects; decidé fiow o isea::;”;i‘? g%ﬁﬂf
est support g . : nd the com-
5 ?C’St usable interface. Pport application-specific functions and Provide the
& Lrolotyping the view layer | » '
; yer interface. After defini -
a protot : o enning a desi
i ype of some c?f the basic aspects of the design Pfr;“ modf:L prepare
3. Testi y useful early in the design process gn. Frototyping is par-
» Aesting usability and user satisfaction ;

importance of usabilit i
y and user satisfactj
i _ action, ma i
L pgi/ jgze]ql.ll&:ltct oagtcntlon to usability, focusing prgl:ﬁ;;rr:): 'efn‘;l:tl? o lS'u" o
. . many cases, usabilj ill i i p—
2 ny cases, ity still i ’
on. Adoption of usability in the later stages (:E l;lll':t)at l%;:i:n PTG

satisfacti ility i
A action and usability in Chapter 14.

Re_zﬁnirgg_v and iterating the design

12.4 MACRO.L
EVEL PR .
ANALYZING USE GASE:G ESS: IDENTIFYING VIEW CLASSES BY

ad W (<] aCIOI'
i .

CHAPTER 12:
12: VIEW LAYER: DESIGNING INTERFACE OBJECTS 285

286 PART FOUR: OBJECT-ORIENTED DESIGN

operate as a buffer between the user and the rest of the business objects [3]. The
interface object is responsible for behavior related directly to the tasks involving
contact with actors. Interface objects are unlike business objects, which lie inside
the business layer and involve no interaction with actors. For example, computing
employee overtime is an example of a business object service. However, the data
entry for the employee overtime is an interface object.

Jacobson, Ericsson, and Jacobson explain that an interface object can partici-
pate in several use cases. Often, the interface object has a coordinating responsi-
bility in the process, at least responsibility for those tasks that come into direct
contact with the user. As explained in earlier chapters, the first step here is to be-
gin with the use cases, which help us to understand the users’ objectives and tasks.
Different users have different needs; for example, advanced, or “power,” users
want efficiency whereas other users may want ease of use. Similarly, users with
disabilities or in an inteational market have still different requirements. The chal-
lenge is to provide efficiency for advanced users without introducing complexity
for less-experienced users. However, developing use cases for advanced as well as
less-experienced users might lead you to solutions such as shortcuts to support
more advanced users.

The view layer macro process consists of two steps:

1. For every class identified (see Figure 12-1), determine if the class interacts with
a human actor. If so, perform the following; otherwise, move to the next class.
1.1 _Identify the view (interface) objects for the class. Zoom in on the view objects

by utilizing sequence or collaboration diagrams to identify the interface
objects, their responsibilities, and the requirements for this class.

1.2 Define the relationships.among-the view interface) objects. The interface
objects, like access classes, for the most part, are associated with the busi-
ness classes. Therefore, you can let business classes guide you in defining
the relationships among the view classes. Furthermore, the same rule as
applies in identifying relationships among business elass objects also applies
among interface objects (see Chapter 8).

2. Iterate and refine.

The advantage of utilizing use cases in identifying and designing view layer ob-
jects.is that the focus centers on the user, and including users as part of the plan-
ning and design is the best way to ensure accommodating them. Once the inter-
face objects have been identified, we must identify the basic components or objects
used in the user tasks and the behavior and the characteristics that differentiate
each kind of object, including the relationships of interface objects to each other
and to the user. Also identify the actions performed, the objects to which they ap-
ply, and the state information or attributes that each object in the task must pre-
serve, display, and allow to be edited. Figure 12-2 shows the relationships among
business, access, and view layer objects. The relationships among view class and
business class objects is opposite of that among business class and access class ob-
jects. After all, the interface object handles all communication with the user but
does not process any business rules; that will be done by the business objects.

CHAPTER 12:
12: VIEW LAYER: DESIGNING INTERFACE OBJECTS 287

The class interacts with a
human actor

Zoom in by utilizing

sequence or
collaboration
diagrams.

The ?Iass doesn’'t interact
with a human actor

Next class
Refine and iterate

Identify the
interface
objects for the
class

Define the
relationships among
the view objects

FIGURE 12-1 $

The macro-level design process.

¢ application, i ifui

Sing 2 des._gg ltizttlo;:s:td?:::;wng the use cases and interface objects
- S u L] B r

bes the micro-leve] U] design Prcs)ers needs. The remainder of this

cess and the issues involved.

chapter descri

1
2.5 MICRO.LEVEL PROCESS

To be successful
Centered. A
Providing th

b4 g
J $
’

288 PART FOUR: OBJECT-ORIENTED DESIGN

—
View objects

—
Business objects

L

——
Access objects

FIGURE 12-2
The relationships among business, access, and view objects. In some situations the view ¢lass

can become a direct aggregate of the access object, as when designing a Web interface that
must communicate with an application/Web server through access objects. See also Figure
1

11-18.

application is to automate what was a paper process, then the tool should be sim-
ple and natural. Design your application so it allows users to apply their previous
real-world knowledge of the paper process to the application interface. Your de-
sign then can support this work environment and goal. After all, the main goal of
view layer design is to address users’ needs.

The following is the process of designing view (interface) objects:

1. For every interface object identified in the macro Ul design process (see Fig-
ure 12-3), apply micro-level Ul design rules and corollaries to develop the UL
Apply design rules and GUI guidelines to design the UI for the interface ob-

jects identified.
2. Iterate and refine.

In the following sections, we look at the three UI design rules based on the de-
sign axioms and corollaries of Chapter 9.

12.5.1 Ul Design Rule 1. Making the Interface Simple- (Application

of Corollary 2)

First and foremost, your user interface should be so simple that users are unaware
of the tools and mechanisms that make the application work. As applications be-
come more complicated, users must have an even simpler interface, so they can
learn new applications more easily. Today’s car engines are so complex that they
have onboard computers and sophisticated electronics. However, the driver inter-
face remains simple: The driver needs only a steering wheel and the gas and brake
pedals to operate a car. Drivers do not have to understand what is under the hood
or even be aware of it to drive a car, because the driver interface remains simple-

The UI should provide the same simplicity for users.

CHAl :
PTER 12: VIEW LAYER: DESIGNING INTERFACE OBJECTS 289

Apl?ly micro-leve] UL
design rules and GUI
Buidelines to each

. interface object
identified to develop
the UI

Next interface objects
Refine and iterate

Done

FIGURE 12-3
The micro-level design process.

design. Here, it means th
i/ at each .
pose. Similarly, when youd :mgllt class must have a single

se o i
pose of the Ul class with a few sentences. Furthermore, we

terf; i : . a muiti : ,
ace 1s not simple enough; ideally, in the ﬁial protillt:::(tlc:ll; (gl;lzs;t)lr(::)sf your u}-
* ems will

have been solved.
A number of additi
of additional factors may affect the design of your application. F
. For

] ’ P

features. Reme

. mber that additional

There is no si . tonal features and shortcuts can

So, in eval tl-mp le equation to determine when a design trad affect the product,
vating the impact, consider the following: e-off is appropriate.

* Ev iti
ityega?r?tiln:;)nncal fea(;ure potentially affects the performance
TR €, and support costs of icati
It is hard : of an application.
= adapir ::; ii:r(a cble31gn problem after the release of a product bec
* Simplicity is differens from ot O & Peculiarity in the design e
. ent from being simplist : . 57
oitaet?lr?sq'.’llref a good deal of work andpclgtt:llg R something simple to use
Tes implemented by a simall oy
essari]) extension in the applicati
y have a proportional effect in a user intenface.li*!:);c::a(::ptl:: dff fh?;?-f iy
s mary

» complexity, stabil-

290 PART FOUR: OBJECT-ORIENTED DESIGN

task is selecting a single object, extending it to support selection of multiple
objects could make the frequent, simple task more difficult to carry out. De-
signing a Ul based on its purpose will be explained in the next section.

12.5.2 Ul Design Rule 2. Making the Interface Transparent and

Natural {Application of Corollary 4)

The user interface should be so intuitive and natural that users can anticipate what
to do next by applying their previous knowledge of doing tasks without a com-
puter. An application, therefore, should reflect a real-world model of the users’
goals and the tasks necessary to reach those goals.

The second Ul rule is an application of Corollary 4 (strong mapping) in UI de-
sign. Here, this corollary implies that there should be strong mapping between the
user’s view of doing things and Ul classes. A metaphor, or analogy, relates two
otherwise unrelated things by using one to denote the other (such as a question
mark to label’a Help button). For example, writers use metaphors to help readers
understand a conceptual image or model of the subject. This principle also applies
to UI design. Using metaphors is a way to develop the users’ conceptual model of
an application. Familiar metaphors can assist the users to transfer their previous
knowledge from their work environment to the application interface and create a
strong mapping between the users’ view and the Ul objects. You must be careful
in choosing a metaphor to make sure it meets the expectations users have because
of their real-world experience. Often an application design is based on a single

metaphor. For example, billing, insurance, inventory, and banking applications can
represent forms that are visually equivalent to the paper forms users are accus-
tomed to seeing.

The UT should not make users focus on the mechanics of an application. A good
user interface does not bother the user with mechanics—-Computers should be
viewed as a tool for completing tasks, as a car is a tool for getting from one place
to another. Users should not have to_know how an application works to get a task
done, as they should not have to know how a car engine works to get from one
place to another. A goal of user interface design is to make the user interaction

with the computer as simple and natural as possible.

12.5.3 Ul Design Rule 3. Aliowing Users to Be in Control of the
Software (Application of Corollary 1) . '

The third UI design rule states that the users always should feel in control of the
software, rather than feeling controlled by the software. This concept has a nuim-
ber of implications. The first implication is the operational assumption that actions
are started by the user rather than the computer or software, that the user plays an
active rather than reactive role. Task automation and constraints still are possiblé
but you should implement them in a balanced way that allows the user freedom of

choice.
The second implication is that users, because of their widely varying skills
the interface. The system

and preferences, must be able to customize aspects of
software provides user access to many of these aspects. The software should 1€

flect user sett
- ttings for dj
options. ifferent

* Make the interface forgivin
* Make the interface visual,

* Provide immediate f; ;
e -
* Avoid modes, - edback.

* Make the in!‘érface consistent. .

takes do not ¢

ause serious or irreversible results,

292 PpART FOUR: OBJECT-ORIENTED DESIGN

1 what
. they must cance ;
mode whenever :on has dif-
i des Users are 1n a same action has
12.5.3.4 dA‘,":;dbxo‘:e they can do something else or \:Sht;:(r)l ;::'us on the way an ap-
they are dol - ituations. Modes force use herefore
in different situations. mplete. Modes, the :
ferent results in ci the task they want to comp lication
icati rks, instead of on i tual model of how the app
plication wo eac use their conceptu s G
: i ability to . deless application; ’
interfere with users ible to design a mode ibl
is not always possi - to the smallest possible
should work. It is no vion and Timit them : i
es an except J ous by providing
you Sh0u111d makeuI:eC:‘: are in a mode, you should nt:;ak]edl‘t3 ;’::;y o lgafn and re-
scope. Whenever ding the mode shou . :
: ethod for en : er interface:
good wsu’?:]cue:rzl;r?:e of the modes that can be used in the us
member. These

A needs information to continue, such as
odal diaio, ometim icati 1 Lit
Modal di S es an application : ,
l e! otf a.ﬁle 'nt(t)l which users want to save something. When an error occurs
1

i

the modal dialog. Users are in a spring-loaded mode when they continually
. ring-lo es.

ing the mouse
s de; for example, dragglng "
lon to remain in th?t mode; %9 . In this case, the vi-
m}"St fake Somi;(t::)ln pressed to highlight a portion of te):o:lr:i stay highlighted
with 2 m?us?;he mode is the highlighting, and the text s
al cue for)
;gr B LD ek Cutif:n : (li)?:\t:ing application, you may be felllf t:;
] . If you are . ing. After you se
s Tool-drive . tbrush, for drawing]
encil or a pain d tool. You are in a
choose a tool, such as a p to match the selecte g |
i e changes se pointer
e mousea[-pia,o:gte ;ilitellay?to be confused because the changed mouse p
mode, but you

i i ode.
is a constant reminder you are in a m

sat st e y a d 1 p
1 l 1 : I'E & n hE 1SET Can pIE jl:[tl = hEhEl 101 Jf [hE 5)5[
1} L] i

FACE
12.6 THE PURPOSE OF A VIEW LAYER INTER

. rve
. dow should se
windows. Each window ses:
. employ one or more Jowing pu
Your user m.tgrf;c:r;::e Wli)nd{)ws commonly are used for the fol TES
a clear, specific ’

t
. : ss to data tha
d try.windows. Data entry windows provide acce
. d data en) ; ication.
Fo'er;zs;ann\mfﬁéfc;i)splay, and change ": th?ni;‘gl;:lslation or ask users to ?ufizz
us > isplay status ical fea
. boxes display L X _A typic
* Dialog boxes- DI:II;ga decision before continuing with a tasl;use 3’0 rocess e
informa:mnbor nils the OK button that a user clicks with a m r
of a dialog box . aine R
ices.) indow is a cOntatier,
selec?é‘»d -Chmc?:d s (main windows). An application Wi tire application with
® Application winfow icons. In other words, it contains an en
T iCOns.
@’p‘riﬁtmﬁj?c@-o
which users can interact.

CHAPTER 12: VIEW LAYER: DESIGNING INTERFACE OBJECTS 203

You should be able to explain the purpose of a window in the application in a
single sentence. If a window serves muitiple purposes, consider creating a sepa-
rate one for each,

12.6.1 Guidelines for Designing Forms and Data

Entry Windows
When designing a data entry window or forms (or Web forms), identify the infor-
mation you want to display or change. Consider the fol].

owing issues:

* In general, what kind of information will users work with and why? For exam-
ple, a user might want to change inventory information, enter orders, or main-
tain prices for stock items.

* Do users need access 10 ali the information in a table or just some information?
When working with a Portion of the information in a table, use a query that se-
lects the rows and columng users want.

* In what order do users want rows to appear? For example, users might want to
change inventory information stored alphabetically,

chronologically, or by in-
ventory number. You have to provide a mechanism for the user so that the order
can be modified,

Next, identify the tasks that u
entry window. Typical data entry
* Navigating rows in a table, such as moving forward and backward, and going to

the first and last record.
* Adding and deleting rows.
* Changing data in rows.
* Saving and abandoning changes.

sers need to work with data on the form or data
tasks include the following:

You can provide menus, push buttons, and speed bar buttons that users choose
o initiate tasks. You can Put controls anywhere on a window. However, the layout
You choose determines how successfully users can enter data using the form. Here
are some guidelines to consider-
* You can use an existing paper form, such as a printed invoice, as the starting
point for your design.

¢ If _the printed form contains

same way they read a page of a book, from left to

. general, put required or frequently entered informa-
lon toward the top and left side of the form, entering optional or seldom-entered

(see Figure 12-5),
* Whep information is

positioned vertically,
em Countries). Thjs

align fields at their left edges (in West-
usually makes

it easier for the user o scan the information.

204 PART FOUR: OBJECT-ORIENTED DESIGN

lable device)

FIGURE 12-4
An example of a dialog box with multiple pages in the Microsoft multimedia setup.

Text labels usually are left aligned and placed above or to the left of the areas to
which they apply. When placing texi labels to the left of text box controls, align
the height of the text with text displayed in the text box (see Figure 12-6).
« When entering data, users expect to type information from left to right and top.
to bottom, as if they were using a typewriter (usually the Tab key moves the fo-
cus from one control to another). Arrange controls in the sequence users expect
to enter data. However, you may want the users to be able to jump from one
group of controls to the beginning of another group, skipping over individual
controls. For example, when entering address information, users expect o e

the Address, City, State, and Zip Code (see Figure 12-7)

« Put similar or related information together, and use visual effects to emphasiz
the grouping. For example, you might want to put a company’s billing and ship-

ping address information in separate groups. To emphasize a group,

close its controls in a distinct visual area using a rectangle, lines, ali

colors (see Figure 12-4).

CHAPTER 12: VIEW
: LAYER: DESIGNIN
G INTERFACE 0
BIECTS 205

Frequently
entered

. Information

entered

informat;
FIGURE 12-5 atlon
Required information should b

. e put toward .
seldom entered information toward the boﬂ;f: top and left side of the farm entering optionat
. ! or

FIGURE 12-g
:-hPlace text labels to th
~ the text box,

e left of text bo; i
X controis, align the height of the text with text displayed i
in

Possible tocations for text
Labels

od LU TN

5, Sy P -""1- AR e e S,
Jibiarte j,_.in,a*;{f:er;%g;_ ¥ ﬁi!- i
f.ful::;'_f]}_t ’t.ﬂ £ g E?;}g fierh

*
EEFR it o MLl)

296 FART FOUR: OBJECT-ORIENTED DESIGN

T " 3 m‘_’““_'_“_.}__n |
s ' E=r— |
% e |

FIGURE 12-7
Arrange controls left to right and top to bottom.

The Real-World Issues on Agenda “Future of the GUI Landscape” examines win-

dow presentations for the future.
12.6.2 Guidelines for Dosigning Dialog Boxes and Error Messages

A dialog box provides an exchange of information or a dialog between the user
and the application. Because dialog boxes generally appear after a particular menu

item (including pop-up or cascading menu items) or a command button, define the
title text to be the name of the associated command from the menu item or com-
mand button. However, do not include ellipses and avoid including the command’s
menu title unless necessary to compose a reasonable title for the dialog box. For
example, for a Print command on the File Menu, define the dialog box window’s
title text as Print, Not Print . . ., or File Print.
If the dialog box is for an error message, use the following guidelines:
* Your error message should be positive. For example instead of displaying “You
have typed an illegal date format,” display the message “Enter date format

mm/dd/yyyy."?
* Your error message should be constructive. For example, avoid messages such

as “You should know better! Use the OK button”; instead display “Press the
Undo button and try again.” The users should feel as if they are controiling the

system rather than the software is controlling them.

2 Note: Sometimes, an innocent design decision (such as representing date as mm/dd/yy) can have im-
mense implications. The case in point is the Y2K (year 2000) problem, where for many computer and
software systems, the year 2000 will bring a host of problems related to software programs that were

designed to record the year using only the last two digits.

c :
HAPTER 12: VIEW LAYER: DESIGNING INTERFACE OBJECTS 297

Real-Worig Issues on Agenda
FUTURE OF THE GuI LANDSCAPE: 3.p OR FLATLAND?

Not so long ago, using i
» USIng icons, windows ang drop-
%t;\:nb?gg::pso:gt:as\;gtate applications was a radi?:gl
i _ stems builders. Tog three i
idea for o - ! ay, that GUJ ! Quarters, for instance-—
o o bt ml:;%urtous. But what will the GUI of tomor- ;nto a full-color, animated mapc‘-;‘ltl'la:J let;irnss?rdged
. idden
If the visionaries had thei e s
their way, cor, “Th i
users would ji R . » COrporate PC € average office wo i
d interact with their computers in 4 wholly @maunts of information rr:::tr 2? ?w:m?cge?s' w”th val&:t
; not well-

naturalistic way, ('
y. They'd never need help screens to OFganized,” says Robertson. A 3-D interface not on|
! o
allows users to see more on screen at once, ‘1?123)((

explain an icon or find a fil

® C e or launch an lica-

:;'ﬁz.gliv;mhglg “u..'lwoul_c{l:I appear “virtualiy real.’?ger:;:-
ree-dimensional, For inst,

9 ol bo . stance, the contents of € i
sonire SUI eg? j’; ,:zdfg t:z a vast on-dim o ;:::aldr?ppear in 3-D space, allosvi;‘;i::; l::g;dr gnl\;e
sional ft . , president of 4th € fles and launch applicati ing in
a portal to 1ah" Alexandria, V_a-, research firm.“3-Djs ON—or “foregroundin ”E)"cauops o par oo

s " hexandis, Va. oo g9"—a particular Part of the
dope musnt lust for games anymore. Corporate [T
= nents are awakening to the Power of data vi-
ua i;fal:lr:)n. next-generation Gig and of course, the
ek '; Web. Here's the business justificatior’l for

! . eventually result | i i
- ie;izf:c‘zf eff;”onmems o moro o rea y tin a commerq:al version called

» WOr Perform tasks more il i -

less training. 3-D interf; nitve offorr i

: - 3L erfaces trade nitive e Place insid | '

z:)n;pltg gggc?.lp"og: eraces hamgg t muf:log Jg: R e the box, is feadying its own set of
Cft a document to g mem i S ’

how to atao 0 using comn- o there’s no need to i

e ns, the user chooses a Stapler on the ::hoogr_ng the next corporat: %rtrl); g:gemgitinab&ut

op, . ransition to 3-D on ew e
it _rf;’:)rm;non can bg presented—ang yp- “Thats probably stil a fe‘zrye desmo')',,says o
80 pann i r."a_ tD format than in 2.p, Example: An o e

; H
g rganizationat chart can be represented in

-—
By Stephanie wWilki
13, Number 35 \e0N. PC Week, September 23, 1996, Vol.

* Your error messa :
ge should be brief and ;
check Offending ¢ " meaningful. For example, “ERROR-
Programmen duf-i ngomggiﬁé : ';zlt;obugh this message mighl: be usegn(l)?(;rt)t(E:
g)rri the user of your system, eOUEEINg phase, it is not 2 useful message
ent the controls in the dia .
. 0g box In the directj i
Mean irection
user lfuzgc:: e tlonm s 9P (0 bottom. Locate the pﬁmpf:;pi?efﬁaf;mf“ i
lines for orj as close to the upper-left corner as possible. Follow si ‘Whmh~ the
Tienting controls within a group in the dialog b.ox W similar guide-

298 FPART FOUR: OBJECT-ORIENTED DESIGN

12.6.3 Guidelines for the Command Buttons Layout

Lay out the major command buttons either stacked along the upper-right border of
the dialog box or lined up across the bottom of the dialog box (see Figure 12-8).
Positioning buttons on the left border is very popular in Web interfaces (see Fig-
ure 12-9). Position the most important button, typically the default command, as
the first button in the set. If you use the OK and Cancel buttons, group them to-
gether. If you include a Help command button, make it the last button in the set.

You can use other arrangements if there is a compelling reason, such as a nat-
ural mapping relationship. For example, it makes sense to place buttons labeled
North, South, East, and West in a compasslike layout. Similarly, a command but-
ton that modifies or provides direct support for another control may be grouped or
placed next to that control. However, avoid making this button the default button
becanse the user will expect the default button to be in the conventional location.
Once again, let consistency guide you through the design.

For easy readability, make buttons a consistent length. Consistent visual and op-
erational styles will allow users to transfer their knowledge and skills more easily.
However, if maintaining this consistency greatly expands the space required by a
set of buttons, it may be reasonable to have one button larger than the rest. Place-
ment of command buttons (or other controls) within a tabbed page implies the ap-
plication of only the transactions on that page. If command buttons are placed
within the window but not on the tabbed page, they apply to the entire window

(see Figure 12-4).

FIGURE 12-8
Arrange the command buttons either along the upper-right border of the form or dialog box or lined

up across the bottom.

Default Button

Fet arnic o Hri E: —
[Lt e | | _ [
i = v |
G i]|
B ol | |
e & ®
| T e | R e i

CHA :
PTER 12: VIEW LAYER: DESIGNING INTERFACE OBJECTS 209

horia ;
e

Fhal's e

gt 3
ﬁu;_ ir_.llnnues m
-.,ﬁl.ll'(ﬁ;enu a
B tﬂ:@_ = o
°ﬂf’:ﬁ'_ Cnllies 3
FAG §
: L
5
ton
Aﬁﬂmlﬁmdmuugiﬁlﬂmmm
} | Comouers/Commupication | Consimyelion Consumer Producs | Edycalipn
Emmﬁmlﬁmmmmmlmlwm ' ! -
ﬂeﬁmﬂ;ﬁ; Mﬁr‘--‘!‘ 2 r%uwmlmm Brivacy Popsy
Lags Dpogrundies lEﬂnmIijumulaemm_usllT.&mm isg
Copyright © 1998 The McGraw-Hill Companies, Inc.
FIGURE 12-9

Position;
0sitioning buttons on the left is popular in Web interfaces.

12.8.4 Guidelines f
. or Designing Applicati i
A typl?al application window co o Doty o
a title bar that identifies what

enu bars, toolbars, and status bars

tommand drop-down menu is) mmon drop-down menus. Whi]

3 : _ not required for all icati e a
lines when including such menus in your SOftwar::EFi’::;ifn:CTf’ apply these guide-
* The File menu. The Fi '

- ile menu provides an in
terf; : .
that apply to a file. Your application should i:clﬂce for the primary operations

1ie

remai i i
inch?:jns t.;l]ctlve even when its window is closed, such as
€ the Close command instead of Exit ,

* The Edit
it menu. Include general purpose editing commands on the Edit m
enu.

4 p » a'nd P St

300 FART FOUR: OBJECT-ORIENTED DESIGN
CHAPTER 12:
12 VIEW LAYER: DESIGNING INTERFACE OBJEGTS 301

» The View menu and other command menus. Commands on the View menu should S
change the user’s view of data in the window. On this menu, include commands L] B
that affect the view and not the data itself; for example, Zoom or Outline. Also FIGURE 12. 4 R e
; p _ 12-10 0% &1 —-—M
include commands for controlling the display of particular interface elements in Toolbar,
the view; for example, Show Ruler. These commands should be placed on the
pop-up menu of the window.
» The Window menu. Use the Window menu in multiple document, interface-style
applications for managing the windows within the main workspace. PR gy o — -
¢ The Help menu. The Help menu contains commands that provide access to Help N B e T i] | G5 wiM 50
information. Include a Help Topics command. This command provides access to FIGURE 1214 o B
i ! Status bar,

the Help Topics browser, which displays topics included in the application’s
Help file. Alternatively, provide individual commands that access specific pages
of the Help Topics browser, such as Contents, Index, and Find Topic. Also in-
clude other user assistance commands or wizards that can guide the users and
show them how to use the system. It is conventional to provide access to copy-
right and version information for the application, which should be included in
the About Application name command on this menu. Other command menus can
be added, depending on your application’s needs.

¢ Toolbars and status bars. Like menu bars, toolbars and status bars are special
interface constructs for managing sets of controls. A toolbar is a panel that
contains a set of controls, as shown in Figure 12-10, designed to provide
quick access to specific commands or options. Some specialized toolbars are
called ribbons, toolboxes, and palettes. A status bar, shown in Figure 1211,
is a special area within a window, typically at the bottom, that displays infor-
mation such as the current state of what is being viewed in the window or any
other contextual information, such as keyboard state. You also can use the sta-
tus bar to provide descriptive messages about a selected menu or toolbar but-

ton, and it provides excellent feedback to the users. Like a toolbar, a status sage box. Finally, colo
: . L : _ * will not hide poor fu
bar can contain controls; however, typically, it includes read-only or nonin- The following guidelines can help you nc?onaht)ﬂ
teractive information. ' Yo o use colors in the most effectjy :
P]el'I S‘::’?n;ze identical or similar colors to indicate related fi e
» account informati
- . colors to distineus fields might appear in one color. Use diff on. For exam-
12.6.5 Guidelines for Using Colors . nguish groups of information from each th iferent or contrasting
For all objects on a window, you can use colors to add visual appeal to the form. SFor.an 0;;_‘;’;:1%8 ali:counts could appear in differen co?orse . For example, check.
However, cpnsider the hardware. Youf Windows-based application may end up be- ple, in an e ?i‘; Iground, use a contrasting but complementary cof
ing run on just about any sort of monitor. Do not choose colors exclusive to a par- color so that th » Make sure that the background color cont olor. For exam-
ticular configuration, unless you know your application will bg run on that spec_lﬁc : * You can use brie I:ltser lcan easily read data in the field rasts with the data
hardware. In fact, do not dismiss the possibility that a user will run your applica- You can yse dimgcol(c::'sotf toa;al] ?}:temion to certain elements op the sc
tion with no color support at all. ' Might . make other elements] : reen, and
. . . .] want . s less notice
Figure out a cc_:lor scheme. If you use multiple colors, do not mix them indis- * Use colors égnC;IiS‘;l:iayl the required field in a brighter co]c?ll') lt;al;or ¢Xample, you
criminately. Nothing looks worse than a circus interfgge [1]. Do you hgve a good application, Foy o ntly within each window and among alj wroguonaj fields
color sense? If you cannot make everyday color decisions, ask an artist or a dé- throughout. Xample, the colors for push buttons shoul 11COWS 1n your
signer to review your color scheme. Use color as a highlight to get attention. ‘If * Using too I:llan col . ould be the same
there is one field you want the user to fill first, color it in such a way that it wil tion Jess intere s?;in Ors can be visually distracting and will mak
stand out from the other fields. s All E- ' € your applica-
OW the user to modify the color conﬁgurati;m of you 1
r application.

302 PART FOUR: OBJECT-ORIENTED DESIGN

12.6.6 Guidelines for Using Fonts
Consistency is the key to an effective use of fonts and color in your interface. Most
commercial applications use 12-point System font for menus and 10-point System
font in dialog boxes. These are fairly safe choices for most purposes. If System is
too boring for you, any other sans serif font is easy to read (such as Arial or Hel-
vetica). The most practical serif font is Times New Roman.

Avoid Courier unless you deliberately want something to look like it came from
a typewriter. Other fonts may be appropriate for word processing or desktop pub-
lishing purposes but do not really belong on Windows-based application screens.
Avoid using all uppercase text in labels or any other text on your screens: It is
harder to read and feels like you are shouting at the users. The only exception is
the OK command button. Also avoid mixing more than two fonts, point sizes, or
styles, so your screens have a cohesive look. The following guidelines can help
you use fonts to best convey information:

» Use commonly installed fonts, not specialized fonts that users might not have on

their machines.
« Use bold for control labels, so they will remain legible when the object is

dimmed.

« Use fonts consistently within each form and among all forms in your applica-
tion. For example, the fonts for check box controls should be the same through-
out. Consistency is reassuring to users, and psychologically makes users feel in
control.

« Using too many font styles, sizes, and colors can be visually distracting and
should be avoided. Too many font styles are confusing and make users feel less
in control.

« To emphasize text, increase its font size relative to other words on the form of
use a contrasting color. Avoid underlines; they can be confusing and difficult to

read on the screen.

12.7 PROTOTYPING THE USER INTERFACE

Rapid prototyping encourages the incremental development approach, “grow,
don’t build” Prototyping involves a number of iterations. Through each iteration,
we add a little more to the application, and as we understand the problem a little
better, we can make more improvements. This, in turn, makes the debugging task
easier.

It is highly desirable to prepare a prototype of the user interface durin
analysis to better understand the system requirements. This can be done with most
CASE tools,> operational software using visual prototyping, or normal develop-
ment tools. Visual and rapid prototyping is a valuable asset in many ways. First, it
provides an effective tool for communicating the design. Second, it can help yoU
define task flow and better visualize the design. Finally, it provides 2 Jow-cost ¥e

g the

3 System Architect Screen Painter can be used 1o prototype Windows screens and menus.

CHAPTER 12:
12: VIEW LAYER: DESIGNING INTERFACE OBJECTS 303

hicle for getting user in

sign process. Put on a design. This

is particularly useful early in the de-

2)

()
] S

1.
2, Link or agsj
. SS]gn the appropriat .
) _ e beh i
Jects and their events, aVI0rs or actions to these user interface ob.

3.
Test, debug, then add more by going back to step |1

FIGURE 12-12
Prototyping user interface consists of three steps

Cameel] oK1

) Create user
interface controls

e -
T E—— Wi

Create the forms and controls

Associate actions

.o the user lr_n_“ _____] L I
interface controls ; |
and their events D ’
| A |
/ I |
Test/debug Gancel] ' 'E
— __'..._..;._.._ -'-‘:?_‘-ﬂf-.——*_-—t
Add actions
N M
|
% 1
| [
‘ ::
| {
| Eangel | 0K

Testthe U

	frontpage.pdf
	index7.pdf
	index8-9.pdf
	index10-11.pdf
	index12-13.pdf
	index14-15.pdf
	page3.pdf
	page4-5.pdf
	page6-7.pdf
	page8-9.pdf
	page10-11.pdf
	page12-13.pdf
	page14-15.pdf
	page16-17.pdf
	page18-19.pdf
	page20-21.pdf
	page22-23.pdf
	page24-25.pdf
	page26-27.pdf
	page44-45.pdf
	page46-47.pdf
	page48-49.pdf
	page50-51.pdf
	page52-53.pdf
	page62-63.pdf
	page64-65.pdf
	page66-67.pdf
	page68-69.pdf
	page70-71.pdf
	page78-79.pdf
	page80-81.pdf
	page82-83.pdf
	page84-85.pdf
	page90-91.pdf
	page92-93.pdf
	page94-95.pdf
	page96-97.pdf
	page98-99.pdf
	page100-101.pdf
	page102-103.pdf
	page204-205.pdf
	page206-207.pdf
	page218-219.pdf
	page220-221.pdf
	page280-281.pdf
	page282-283.pdf
	page284-285.pdf
	page286-287.pdf
	page288-289.pdf
	page290-291.pdf
	page292-293.pdf
	page294-295.pdf
	page296-297.pdf
	page298-299.pdf
	page300-301.pdf
	page302-303.pdf

